Math, asked by pavanmeena16200366, 1 year ago

solve for x 4x2 -4a2 +(a4 -b4 ) = 0

Answers

Answered by Anonymous
11
Hey it helps you

Thanks
Attachments:

pavanmeena16200366: thanks
pavanmeena16200366: ok
Answered by mysticd
6

 Given \: Quadratic \: Equation : \\4x^{2} - 4a^{2}x + (a^{4} - b^{4} ) = 0

/*Splitting middle term , we get */

 \implies 4x^{2} - 2(a^{2} - b^{2})x - 2(a^{2}+b^{2})x + (a^{2} + b^{2})(a^{2} - b^{2}) = 0

 \implies 2x[ 2x - (a^{2} - b^{2}) ] -(a^{2}+b^{2})[2x-(a^{2} - b^{2})] = 0

 \implies  [2x - (a^{2} - b^{2})] [2x-(a^{2} + b^{2})] = 0

 \implies  [2x - (a^{2} - b^{2})] = 0 \:Or \: [2x-(a^{2} + b^{2})] = 0

 \implies  2x = (a^{2} -b^{2}) \:Or \: 2x = (a^{2} + b^{2})

 \implies  x = \frac{(a^{2} -b^{2})}{2} \:Or \: x = \frac{(a^{2} + b^{2})}{2}

Therefore.,

 \green {   x = \frac{(a^{2} -b^{2})}{2} \:Or \: x = \frac{(a^{2} + b^{2})}{2} }\\\green{ are \: roots \: of \: given \: Quadratic \: Equation }

•••♪

Similar questions