Math, asked by tsmolehane, 1 month ago

solve for x
5(x+1)=3(3x+2)-4​

Answers

Answered by aditiverma1605
0

please mark me brainliest

Attachments:
Answered by SachinGupta01
6

 \large{ \rm \underline{Given - }}

 \sf \dashrightarrow  \: 5(x+1)=3(3x+2)-4 \:

 \large{ \rm \underline{To \:  find  - }}

 \sf \dashrightarrow  \: Value \:  of  \: x =  \: ?

 \large{ \rm \underline{Solution   - }}

 \sf \dashrightarrow  \: 5(x+1)=3(3x+2)-4 \:

 \sf \dashrightarrow  \: 5x +5 =9x+6-4

 \sf \dashrightarrow  \: 5x +5 =9x+2

 \sf \dashrightarrow  \:  - 4x + 5 = 2

 \sf \dashrightarrow  \:  - 4x  = 2 - 5

 \sf \dashrightarrow  \:  - 4x  =  - 3

 \sf \dashrightarrow  \:  x  =  \dfrac{ - 3}{ - 4}

 \sf \dashrightarrow  \:  x  =  \dfrac{  3}{4}

 \sf \dashrightarrow\boxed{ \sf Hence  \: the \:  value  \: of  \: x  \: is  \: \dfrac{  3}{4} }

━━━━━━━━━━━━━━━━━━━━━━━━

 \large{ \rm \underline{Verification    - }}

 \sf \dashrightarrow  \: 5(x+1)=3(3x+2)-4 \:

 \sf \dashrightarrow  \: 5  \left(\dfrac{  3}{4}  +1\right) \bf= \sf3\left(3\left(\dfrac{  3}{4}  \right)+2\right)-4 \:

 \bf   LHS

 \sf \dashrightarrow  \: 5  \left(\dfrac{  3}{4}  +1\right)

 \sf \dashrightarrow  \: 5  \left(\dfrac{  3}{4}  + \dfrac{4}{4} \right)

 \sf \dashrightarrow  \: 5  \left(\dfrac{  3 + 4}{4}   \right)

 \sf \dashrightarrow  \: 5   \times \dfrac{  7}{4}

 \sf \dashrightarrow  \:  \dfrac{  35}{4}

 \bf   RHS

 \sf \dashrightarrow   \:  \sf3\left(3\left(\dfrac{  3}{4}  \right)+2\right)-4 \:

 \sf \dashrightarrow   \:  \sf3\left(\dfrac{  9}{4}  +2\right)-4 \:

 \sf \dashrightarrow   \:  \sf3\left(\dfrac{  9}{4}  + \dfrac{2 \times 4}{4} \right)-4 \:

 \sf \dashrightarrow   \:  \sf3\left(\dfrac{  9}{4}  + \dfrac{8}{4} \right)-4 \:

 \sf \dashrightarrow   \:  \sf3\left(\dfrac{  9 + 8}{4} \right)-4 \:

 \sf \dashrightarrow   \:  \sf3\left(\dfrac{  17}{4} \right)-4 \:

 \sf \dashrightarrow   \:  \sf\dfrac{ 51}{4} - 4

 \sf \dashrightarrow   \:  \sf\dfrac{ 51}{4} -  \dfrac{4 \times 4}{4}

 \sf \dashrightarrow   \:  \sf\dfrac{ 51}{4} -  \dfrac{16}{4}

 \sf \dashrightarrow   \:  \sf\dfrac{ 51 - 16}{4}

 \sf \dashrightarrow   \:  \sf\dfrac{ 35}{4}

 \bf{Hence},

 \sf \dashrightarrow   \:  \sf\dfrac{ 35}{4}  = \dfrac{ 35}{4}

 \sf \dashrightarrow   \:   LHS = RHS

 \bf\:Hence \: verified \: !!

Similar questions