Math, asked by kishu636, 10 months ago

solve for x: 5logx+3logx=3logx+1 - 5logx-1​

Answers

Answered by TRISHNADEVI
6

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

\underline{ \mathfrak{ \:  \: Given : \mapsto}} \\   \\   \mathtt{5 {}^{(log \: x)}  + 3 {}^{(log \: x)} = 3 {}^{(log \: x + 1)}  - 5 {}^{(log  \: x- 1)}  } \\  \\  \underline{ \mathfrak{ \:  \: Suppose : \mapsto }} \\  \\  \mathtt{We  \:   \: \: assume  \:  \:  \: that, \:  \underline{ \: log \: x = a \: }}

 \:  \:  \:  \:   \:  \:\:  \:  \:  \:   \mathsf{5 {}^{(log \: x)}  + 3 {}^{(log \: x)} = 3 {}^{(log \: x + 1)}  - 5 {}^{(log  \: x- 1)} } \\  \\  \mathsf{\Longrightarrow \: 5 \:  {}^{a}  + 3  \: {}^{a}    = 3 {}^{( a+ 1)}  - 5 {}^{(a - 1)} } \\  \\  \mathsf{\Longrightarrow \: 5 \:  {}^{a}  +5 {}^{(a - 1)} =3 {}^{( a+ 1)}  - 3  \: {}^{a}} \\  \\  \mathsf{  \Longrightarrow \: 5 {}^{a} + 5 {}^{a}.5 {}^{( - 1)}  = 3 {}^{a} .3 {}^{1}   - 3 {}^{a}  }\\  \\ \mathsf{\Longrightarrow \: 5 {}^{a}  + 5 {}^{a}. \frac{1}{5}   = 3 {}^{a}.3 - 3 {}^{a}  } \\  \\  \mathsf{\Longrightarrow \: 5 {}^{a}(1 +  \frac{1}{5}  ) = 3 {}^{a}(3 - 1) } \\  \\  \mathsf{\Longrightarrow \: 5 {}^{a} \times  \frac{6}{5}   = 3 {}^{a}  \times 2} \\  \\  \mathsf{ \Longrightarrow \: \frac{ \: 5 {}^{a}  \: }{3 {}^{ a} }  =  \cancel{2} \times  \frac{5}{ \cancel{6}} _3  } \\  \\  \mathsf{\Longrightarrow \: ( \frac{5}{3} ) {}^{a}  =  \frac{5}{3} } \\  \\  \mathsf{\Longrightarrow \: ( \frac{5}{3} ) {}^{a}  =(  \frac{5}{3}  ){}^{1} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \mathsf{ \therefore \:  \underline{ \:  \: a = 1 \:  \: }}

 \text{ \:Now, \:  } \\ \\   \text{ \underline{ \:  \:We \:  \:  have \:  assumed  \:  \: that, }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \mathtt{ log \: x = a} \\  \\  \mathtt{\Longrightarrow \: log \: x =1 } \\  \\  \mathtt{\Longrightarrow \: log \: x = log \: 10} \\  \\  \:  \:  \:  \:  \:  \:  \:  \mathtt{ \therefore \:  \:  \underline{ \:  \: x = 10 \:  \: }}

 \underline{ \underline{  \:  : \star :  \:  \mathcal{ \red{PROPERTY \:  \:  \: USED}}  \: :  \star :  \: }} \\  \\  \bold{1. \:If \:  \: p {}^{m + n} = p {}^{m}     \times  p{}^{n} } \\  \\ \bold{2. \: If \:  \: p {}^{m} =  p {}^{n} \:  \: then \:  \: m = n } \\  \\  \bold{3. \: log \: 10 = 1} \\  \\   \: \bold{4. \: p \ {}^{ - 1} =   \frac{1}{p}  }

Similar questions