Math, asked by shalini82, 1 year ago

solve for x:81^-2 divide 729^1-x=9^2x

Answers

Answered by mysticd
65

Answer:

 Value \: of \:x = 5

Step-by-step explanation:

Given \\\frac{(81)^{-1}}{(729)^{1-x}}=9^{2x}

\implies \frac{(9^{2})^{-1}}{(9^{3})^{1-x}}=9^{2x}

\implies \frac{9^{2\times (-1)}}{9^{3\times (1-x)}}=9^{2x}

 By \: Exponential \:Law,\\(a^{m})^{n}=a^{mn}

\implies \frac{9^{-2}}{9^{3-3x}}=9^{2x}

\implies 9^{-2-(3-3x)}=9^{2x}

 By \: Exponential \:Law,\\\frac{a^{m}}{a^{n}}=a^{m-n}

\implies 9^{-2-3+3x}=9^{2x}

\implies 9^{-5+3x}=9^{2x}

\implies -5+3x=2x

 By \: Exponential \:Law,\\If\:a^{m}=a^{n}\: then \: m=n

\implies 3x-2x=5

\implies x = 5

Therefore,

 Value \: of \:x = 5

•••♪

Answered by jahidachoudhury4362
130

Answer is 7

Step-by-step explanation:

Given,

81^-2÷729^1-x = 9^2x

(9^2)^-2÷(9^3)^(1-x) = 9^2x

9^-4÷9^(3-3x) = 9^2x

9^-4 = 9^2x × 9^(3-3x)

9^-4 = 9^(2x+3-3x)

For the power x --

-4 = 2x+3-3x

-4 = x+3

x = 3+4

x = 7

Similar questions