Math, asked by anshika3210sharma, 8 months ago

solve for x 9(3^-1/x)+5(6^-1/x)<4(2-1/x)

Answers

Answered by shadowalam0786
0

Answer:

hello

Step-by-step explanation:

3 + x = 7

will be false if any number except 4 is substituted for the variable. The value of the variable for which the equation is true (4 in this example) is called the solution of the equation. We can determine whether or not a given number is a solution of a given equation by substituting the number in place of the variable and determining the truth or falsity of the result.

Example 1 Determine if the value 3 is a solution of the equation

4x - 2 = 3x + 1

Solution We substitute the value 3 for x in the equation and see if the left-hand member equals the right-hand member.

4(3) - 2 = 3(3) + 1

12 - 2 = 9 + 1

10 = 10

Ans. 3 is a solution.

The first-degree equations that we consider in this chapter have at most one solution. The solutions to many such equations can be determined by inspection.

Example 2 Find the solution of each equation by inspection.

a. x + 5 = 12

b. 4 · x = -20

Solutions a. 7 is the solution since 7 + 5 = 12.

b. -5 is the solution since 4(-5) = -20.

SOLVING EQUATIONS USING ADDITION AND SUBTRACTION PROPERTIES

In Section 3.1 we solved some simple first-degree equations by inspection. However, the solutions of most equations are not immediately evident by inspection. Hence, we need some mathematical "tools" for solving equations.

EQUIVALENT EQUATIONS

Equivalent equations are equations that have identical solutions. Thus,

3x + 3 = x + 13, 3x = x + 10, 2x = 10, and x = 5

are equivalent equations, because 5 is the only solution of each of them. Notice in the equation 3x + 3 = x + 13, the solution 5 is not evident by inspection but in the equation x = 5, the solution 5 is evident by inspection. In solving any equation, we transform a given equation whose solution may not be obvious to an equivalent equation whose solution is easily noted.

The following property, sometimes called the addition-subtraction property, is one way that we can generate equivalent equations.

If the same quantity is added to or subtracted from both members of an equation, the resulting equation is equivalent to the original equation.

In symbols,

a - b, a + c = b + c, and a - c = b - c

are equivalent equations.

Example 1 Write an equation equivalent to

x + 3 = 7

by subtracting 3 from each member.

Solution Subtracting 3 from each member yields

x + 3 - 3 = 7 - 3

or

x = 4

Notice that x + 3 = 7 and x = 4 are equivalent equations since the solution is the same for both, namely 4. The next example shows how we can generate equivalent equations by first simplifying one or both members of an equation.

Example 2 Write an equation equivalent to

4x- 2-3x = 4 + 6

by combining like terms and then by adding 2 to each member.

Combining like terms yields

x - 2 = 10

Adding 2 to each member yields

x-2+2 =10+2

x = 12

To solve an equation, we use the addition-subtraction property to transform a given equation to an equivalent equation of the form x = a, from which we can find the solution by inspection.

Example 3 Solve 2x + 1 = x - 2.

We want to obtain an equivalent equation in which all terms containing x are in one member and all terms not containing x are in the other. If we first add -1 to (or subtract 1 from) each member, we get

2x + 1- 1 = x - 2- 1

2x = x - 3

If we now add -x to (or subtract x from) each member, we get

2x-x = x - 3 - x

x = -3

where the solution -3 is obvious.

The solution of the original equation is the number -3; however, the answer is often displayed in the form of the equation x = -3.

Since each equation obtained in the process is equivalent to the original equation, -3 is also a solution of 2x + 1 = x - 2. In the above example, we can check the solution by substituting - 3 for x in the original equation

2(-3) + 1 = (-3) - 2

-5 = -5

The symmetric property of equality is also helpful in the solution of equations. This property states

If a = b then b = a

This enables us to interchange the members of an equation whenever we please without having to be concerned with any changes of sign. Thus,

If 4 = x + 2 then x + 2 = 4

If x + 3 = 2x - 5 then 2x - 5 = x + 3

If d = rt then rt = d

There may be several different ways to apply the addition property above. Sometimes one method is better than another, and in some cases, the symmetric property of equality is also helpful.

Example 4 Solve 2x = 3x - 9. (1)

Solution If we first add -3x to each member, we get

2x - 3x = 3x - 9 - 3x

-x = -9

where the variable has a negative coefficient. Although we can see by inspection that the solution is 9, because -(9) = -9, we can avoid the negative coefficient by adding -2x and +9 to each member of Equation (1). In this case, we get

2x-2x + 9 = 3x- 9-2x+ 9

9 = x

from which the solution 9 is obvious. If we wish, we can write the last equation as x = 9 by the symmetric property of equality.

SOLVING EQUATIONS USING THE DIVISION PROPERTY

Consider the equation

3x = 12

Answered by sssishanraj
0
Go to NCERT solutions
Similar questions