Math, asked by Kokutekanisa05, 9 months ago

solve for x
(9^x+1)+(3^2x+1)=36

Answers

Answered by nitindange1973
1

Answer:

(9x+1)+(3^2x+1)=36

9x+1+6x+1=36

1+1+9x+6x=36

2+15x=36

add( -2) to each side

2+(-2)+15x=36+(-2)

0+15x=36+(-2)

15x=34

x=34/15

x=2.266666667

Answered by barackmcorwa7
1

Answer:

(9^x *9)+3^x*3^x3=36

3^2(x)*3^2 + 3^x*3^x*3=36

{3^2(x)*3^2+3^x*3^x*3}=3^2*4

{3^2(x)*3^2+3^x*3x*3}={3^2}multiply by receprical of 4 at the final results

3^2x+2 + 3^2x+1=3^2

(2x+2)(2x+1)=2

2x(2x+1)+2(2x+1)=2

4x^2+2x+4x+2=2

4x^2+6x=0

4x^2=-6x

X=-3/2

0.25x=-3/2

X=-6

Step-by-step explanation:

Similar questions