solve for x
(9^x+1)+(3^2x+1)=36
Answers
Answered by
1
Answer:
(9x+1)+(3^2x+1)=36
9x+1+6x+1=36
1+1+9x+6x=36
2+15x=36
add( -2) to each side
2+(-2)+15x=36+(-2)
0+15x=36+(-2)
15x=34
x=34/15
x=2.266666667
Answered by
1
Answer:
(9^x *9)+3^x*3^x3=36
3^2(x)*3^2 + 3^x*3^x*3=36
{3^2(x)*3^2+3^x*3^x*3}=3^2*4
{3^2(x)*3^2+3^x*3x*3}={3^2}multiply by receprical of 4 at the final results
3^2x+2 + 3^2x+1=3^2
(2x+2)(2x+1)=2
2x(2x+1)+2(2x+1)=2
4x^2+2x+4x+2=2
4x^2+6x=0
4x^2=-6x
X=-3/2
0.25x=-3/2
X=-6
Step-by-step explanation:
Similar questions