Math, asked by bisht4886, 3 days ago

Solve for x: 9x² - 6px + (p² - q²) = 0​

Answers

Answered by VelvetRosee
51

Answer:

value of x = (p+q)/3 or (p-q)/3

Step-by-step explanation:

given that :

9x² - 6px + (p² - q²) = 0​

the above equation can be solved using

x = [ -(-6p) ± \sqrt{(-6p)^2 - 4(9)(p^2-q^2)} ] ÷ 2(9)  ⇒ eq1

this is the most fundamental formula for solving x which is as

x = -b ± \sqrt{b^2-4ac}   ÷ (2a)

where  a = 9 ; b = (-6p) ;  c = (p^2-q^2)  from the general equation

ax^2 + bx + c =0

from eq 1 ;

x = [ 6p ± \sqrt{36p^2-36p^2+36q^2} ] ÷ (18)

x  = [ 6p  ±  6q ] ÷ 18

x = [p  ±  q ] ÷ 3

x = (p+q)/3 or (p-q)/3

Answered by amitnrw
28

x is  (p - q)/3 or  (p + q)/3 for 9x² - 6px + (p² - q²) = 0​

Given:

  • 9x² - 6px + (p² - q²) = 0​

To Find:

  • Solve for x

Solution:

  • a² - b² = (a + b)(a - b)

9x² - 6px + (p² - q²) = 0​

Step 1:

Rewrite -6p as -3p - 3p  and Add and subtract 3qx

9x² + (- 3p - 3p + 3q - 3q)x + (p² - q²) = 0​

Step 2:

Rearrange the term and rewrite (p² - q²)  as (p + q)(p -q)

9x²   - (3p - 3q)x    - (3p + 3q)x +(p + q)(p -q) = 0​

Step 3:

Take 3x common in 1st 2 terms and  -(p + q) common from last 2 terms

3x(3x    - (p - q))     - (p + q)(3x - (p -q))= 0​

Step 4:

Take (3x    - (p - q))  common

(3x    - (p - q)) (3x     - (p + q)) = 0​

Step 5:

Equate each factor with 0

3x    - (p - q) = 0 => x = (p - q)/3

3x     - (p + q) =0 => x = (p + q)/3

Hence x is (p - q)/3 or  (p + q)/3

Similar questions