Math, asked by SOMEONEinAISpv, 2 months ago

Solve for x. (a + b)2x2 – 8(a2 – b2)x – 20(a – b)2 = 0

Answers

Answered by XBarryX
41

Answer:

Given :-

The distance between two consecutive bright fringes in a baptism experiment using light of wavelength 6000 A⁰is 0.32mm

To Find :-

how much will the distance change if light of wavelength 4800A⁰is used?

Solution :-

We know that

\sf \beta _{i} \propto \lambda_{i}\; and \; \beta_{f}\propto \lambda_{f}βi∝λiandβf∝λf

\sf \dfrac{0.32\times 10^{-3}}{\beta_{f}} = \dfrac{6000 \times 10^{-10}}{4800 \times 10^{-10}}βf0.32×10−3=4800×10−106000×10−10

\sf \dfrac{0.32\times10^{-3}}{\beta_{f}} = \dfrac{6000}{4800}βf0.32×10−3=48006000

\sf\dfrac{0.32\times 10^{-3}}{\beta_{f}} = \dfrac{60}{48}βf0.32×10−3=4860

\sf\dfrac{0.32\times 10^{-3}}{\beta_{f}} = 1.25βf0.32×10−3=1.25

\sf 0.32\times 10^{-3} = 1.25\times\beta_{f}0.32×10−3=1.25×βf

\sf \dfrac{0.32\times 10^{-3}}{1.25}=\beta_{f}1.250.32×10−3=βf

\sf 0.25 \times 10^{-3}=\beta_{f}0.25×10−3=βf

Now

\sf Difference = 0.32 \times 10^{-3}-0.25\times 10^{-3}Difference=0.32×10−3−0.25×10−3

\sf Difference = 0.7\times 10^{-3}\;mDifference=0.7×10−3m

Answered by crankybirds30
0

Answer:

Solve for x. (a + b)2x2 – 8(a2 – b2)x – 20(a – b)2 = 0

Attachments:
Similar questions