Math, asked by rk1421639, 9 days ago

solve for x- (a+b)x²-4abx-(a-b)²=0​

Answers

Answered by MysticSohamS
3

your solution is as follows

pls mark it as brainliest

to \: solve \: for :  \\ value(s) \: of \: x \\  \\ (a + b) {}^{2} x {}^{2}  - 4abx - (a - b) {}^{2}  = 0 \\ comparing \: above  \\ \: quadratic \: equation \: with \\ ax {}^{2}  + bx + c = 0 \\ we \: get \\  \\ a = (a + b) {}^{2}  \\ b =  - 4ab \\ c =  - (a - b) {}^{2}

we \: know \: that \\  Δ= b {}^{2}  - 4ac \\ \\   = (4ab) {}^{2}  - 4(a + b) {}^{2} ( - (a - b) {}^{2} ) \\ \\   = 16a {}^{2} b {}^{2}  + 4(a + b) {}^{2} (a - b) {}^{2}  \\  \\  = 4[4a {}^{2} b {}^{2}  + (a + b)(a + b)(a - b)(a - b)] \\  \\  = 4[4a {}^{2} b {}^{2}  + (a {}^{2}  - b {}^{2} ) {}^{2} ] \\  \\  = 4(4a {}^{2} b {}^{2}  + a {}^{4}  + b {}^{4}  - 2a {}^{2} b {}^{2}  \\  \\  = 4(a {}^{4}  + b {}^{4}  + 2a {}^{2} b {}^{2} ) \\  \\ Δ = 4(a {}^{2}  + b {}^{2} ) {}^{2}

so \: by \: using \: formula \: method \\ we \: get \\  \\ x =  \frac{ - b± \sqrt{b {}^{2}  - 4ac} }{2a}  \\  \\  =  \frac{ - ( - 4ab)± \sqrt{4(a {}^{2} + b {}^{2} ) {}^{2}  } }{2(a + b) {}^{2} }  \\  \\  =  \frac{4ab±2(a {}^{2}  + b {}^{2}) }{2(a + b) {}^{2} }  \\  \\  =  \frac{2(2ab + a {}^{2}  + b {}^{2}) }{2(a + b) {}^{2} }  \: or \:  =  \frac{ - 2( a {}^{2}  + b {}^{2}  - 2ab)}{2(a + b) {}^{2} }  \\  \\  =  \frac{(a + b) {}^{2} }{(a + b) {}^{2} }  \:  \: or \:  \:  =  -  \frac{(a - b) {}^{2} }{(a + b) {}^{2} }  \\  \\ x  = 1 \:  \: or \:  \: x = ( \frac{a - b}{a + b} ) {}^{2}

Similar questions