Math, asked by manojmegha200, 9 months ago

solve for x: abx^2+(b^2-ac)x-bc=0

Answers

Answered by sonuvuce
2

x = -b/a, c/b

Step-by-step explanation:

abx^2+(b^2-ac)x-bc=0

or, abx^2+b^2x-acx-bc=0

or, bx(ax+b)-c(ax+b)=0

or, (ax+b)(bx-c)=0

\impies x=-\frac{b}{a}, x=\frac{c}{b}

Hope this answer is helpful.

Know More:

Q: bx^2 + (b^2-ac)x - bc = 0 solve by using quadratic formula

Click Here: https://brainly.in/question/5917947

Q: Solve for x: abx^2 + (b^2 - ac)x - bc= 0

Click Here: https://brainly.in/question/2244258

Answered by kush193874
9

Answer:

Answer:

 \boxed{\mathfrak{x = -   \frac{b}{a}  \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{c}{b}}}

Step-by-step explanation:

 \sf Solve  \: for \:  x: \\  \sf \implies ab {x}^{2}  + ( {b}^{2}  - ac)x - bc = 0 \\  \\  \sf The \:  left \:  hand  \: side  \: factors  \: into \:  a  \\  \sf product \:  with \:  two  \:   terms: \\  \sf \implies ab {x}^{2}  + {b}^{2}x  - acx - bc = 0  \\ \\  \sf \implies bx(ax + b) - c(ax + b) = 0 \\  \\  \sf \implies (ax + b)(bx - c) = 0 \\  \\  \sf Split  \: into \:  two \:  equations \: and \: calculate \: x : \\  \sf \implies ax + b = 0 \:  \:  \:  \: or \:  \:  \:  \: bx - c = 0 \\  \\  \sf \implies ax =  - b \:  \:  \:  \: or \:  \:  \:  \: bx = c \\   \\  \sf \implies x = -   \frac{b}{a}  \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{c}{b}

Similar questions