Math, asked by Jahnavi63, 1 year ago

Solve for x: abx^2 + (b^2 - ac)x - bc= 0

Answers

Answered by tardymanchester
286

Answer:

The roots are x=\frac{c}{b},\frac{-b}{a}  

Step-by-step explanation:

Given : The quadratic equation - abx^2 + (b^2 - ac)x - bc= 0

To find : Solve for x?

Solution :  

Using quadratic formula,

General form - ax^2+bx+c=0 D=b^2-4ac  

Solution is x=\frac{-b\pm\sqrt{D}}{2a}  

Equation is abx^2 + (b^2 - ac)x - bc= 0

where, a=ab , b=b^2-ac , c=-bc

D=b^2-4ac

D=(b^2-ac)^2-4(ab)(-bc)

D=b^4+a^2c^2-2b^2ac+4b^2ac

D=(b^2+ac)^2

Solution is x=\frac{-b\pm\sqrt{D}}{2a}

x=\frac{-(b^2-ac)\pm\sqrt{(b^2+ac)^2}}{2(ab)}  

x=\frac{-b^2+ac\pm(b^2+ac}{2ab}  

x=\frac{-b^2+ac+b^2+ac}{2ab},\frac{-b^2+ac-b^2-ac}{2ab}  

x=\frac{2ac}{2ab},\frac{-2b^2}{2ab}  

x=\frac{c}{b},\frac{-b}{a}  

Therefore, The roots are x=\frac{c}{b},\frac{-b}{a}  

Answered by KailashHarjo
12

Given:

abx^2 + (b^2 - ac)x - bc = 0.

To Find:

The value of x.

Solution:

abx^2 + b^2x - acx - bc = 0.

bx (ax + b) - c (ax + b) = 0.

(bx - c)(ax + b) = 0.

x = c/b or,

x = -b/a.

Hence, the value of x is c/b or -b/a.

Similar questions