Solve for x and y
1/2x - 1/y = 1
1/x + 1/2y = 8
Answers
Answer:
If it's helpful to you plz mark as brainliest
Step-by-step explanation:
The value of x and y is \frac{1}{6}\ {and}\ \frac{1}{4}
6
1
and
4
1
.
To find:
Solve the Equation: \frac{1}{2 x}-\frac{1}{y}=-1 \text { and } \frac{1}{x}+\frac{1}{2 y}=8=?
2x
1
−
y
1
=−1 and
x
1
+
2y
1
=8=?
Solution:
Given: \frac{1}{2 x}-\frac{1}{y}=-1 \text { and } \frac{1}{x}+\frac{1}{2 y}=8
2x
1
−
y
1
=−1 and
x
1
+
2y
1
=8
\frac{1}{2 x}-\frac{1}{y}=-1
2x
1
−
y
1
=−1
\frac{y-2 x}{2 x y}=-1
2xy
y−2x
=−1
y-2 x=-2 x yy−2x=−2xy
2 \mathrm{x}-\mathrm{y}=2 \mathrm{xy} \ldots \ldots \ldots (1)2x−y=2xy………(1)
\frac{1}{x}+\frac{1}{2 y}=8
x
1
+
2y
1
=8
\frac{2 y+x}{2 x y}=8
2xy
2y+x
=8
2 y+x=16 x y2y+x=16xy
x+2 y=16 x y \dots \ldots \ldots \ldots(2)x+2y=16xy…………(2)
Multiplying equation (1) by 2 and then adding it to equation (2), we get
5 \mathrm{x}=20 \mathrm{xy}5x=20xy
y=\frac{1}{4}y=
4
1
Replacing the value of y=\frac{1}{4}y=
4
1
in equation (1),
2 x-y=2 x y2x−y=2xy
2 x-\frac{1}{4}=2 x y2x−
4
1
=2xy
8 x-1=\frac{8 x y}{4}8x−1=
4
8xy
6 \mathrm{x}=16x=1
x=\frac{1}{6}x=
6
1
Step-by-step explanation:
Given equations:-
Let 1/x = a (and) 1/y = b
Multiply equation (i) by 2
→ 2( a - 2b ) = -2
→ 2a - 4b = -4......(iii)
Subtracting equation (ii) from (iii)
→ 2a - 4b - (2a + b) = -4 - 16
→ 2a - 2a - 4b - b = -20
→ -5b = -20
→ b = 4
Substituting b = 4 in equation (i)
→ a - 2b = -2
→ a - 2(4) = -2
→ a = -2 + 8 = 6
→ x = 1/a = 1/6
→ y = 1/b = 1/4