Math, asked by GracyChhajed, 1 year ago

solve for x and y: 1/x+1 + 1/y+1 = 10; 1/x+1 - 1/y+1 = 4

Answers

Answered by arwahazrat
74
using simultaneous equations 
   1/x +1+1/y+1=10 ....(1)
    1/x+1-1/y+1=4........(2)
adding both the equations

    1/x +1+1/y+1=10 
+  1/x+1-1/y+1=4
=   2/x+2+2=14
=   2/x+4=14
=   2/x=14-4
=   2/x=10
=   x=2/10 = 1/5 = 0.2

put x=0.2 in equation (1)
1/x +1+1/y+1=10 
1/0.2+1+1/y+1=10......(3)
5+1/y+2=10
5+1/y=10-2
5+1/y=8
5+1/y=8
1/y=8-5
1/y=3
1=3y
y=1/3 = 0.333333

ans. x=0.2
        y= 0.333333


Answered by Ganesh094
1

Let the equations are

 \sf \frac{1}{x + 1}  +  \frac{1}{y + 1}  = 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1) \\ \sf  \frac{1}{x + 1}  -  \frac{1}{y + 1}  = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(2) \\

To Find the values of x and y

Then,

\sf \frac{1}{x + 1}  +  \frac{1}{y + 1} + \frac{1}{x + 1}  -  \frac{1}{y + 1} =10+4

\sf \frac{2}{x + 1} =14

\sf \frac{1}{x + 1} =7

\purple {{{\sf  x= \frac{-6}{7}}}}

Now, Substrate eqn 1 and eqn 2

\sf \frac{1}{x + 1}  +  \frac{1}{y + 1} - \frac{1}{x + 1}  -  \frac{1}{y + 1} =10-4

\sf \frac{2}{y+ 1} =6

\sf y+1 = \frac{1}{3}

\purple {{{\sf  y = \frac{-2}{3}}}}

________________________________

Similar questions