solve for x and y: 1/x+1 + 1/y+1 = 10; 1/x+1 - 1/y+1 = 4
Answers
Answered by
74
using simultaneous equations
1/x +1+1/y+1=10 ....(1)
1/x+1-1/y+1=4........(2)
adding both the equations
1/x +1+1/y+1=10
+ 1/x+1-1/y+1=4
= 2/x+2+2=14
= 2/x+4=14
= 2/x=14-4
= 2/x=10
= x=2/10 = 1/5 = 0.2
put x=0.2 in equation (1)
1/x +1+1/y+1=10
1/0.2+1+1/y+1=10......(3)
5+1/y+2=10
5+1/y=10-2
5+1/y=8
5+1/y=8
1/y=8-5
1/y=3
1=3y
y=1/3 = 0.333333
ans. x=0.2
y= 0.333333
1/x +1+1/y+1=10 ....(1)
1/x+1-1/y+1=4........(2)
adding both the equations
1/x +1+1/y+1=10
+ 1/x+1-1/y+1=4
= 2/x+2+2=14
= 2/x+4=14
= 2/x=14-4
= 2/x=10
= x=2/10 = 1/5 = 0.2
put x=0.2 in equation (1)
1/x +1+1/y+1=10
1/0.2+1+1/y+1=10......(3)
5+1/y+2=10
5+1/y=10-2
5+1/y=8
5+1/y=8
1/y=8-5
1/y=3
1=3y
y=1/3 = 0.333333
ans. x=0.2
y= 0.333333
Answered by
1
Let the equations are
To Find the values of x and y
Then,
Now, Substrate eqn 1 and eqn 2
________________________________
Similar questions