Math, asked by krishnajdh200, 1 year ago

Solve for x and y .10/2x+y + 3/2x-y = 3 and 15/2x+y + 9/2x- y = 6​

Answers

Answered by hukam0685
30

Answer:

\boxed{x = 2, \:  y = 1}

Step-by-step explanation:

To solve the linear equations

 \frac{10}{2x + y}  +  \frac{3}{2x - y}  = 3 \\  \\  \frac{15}{2x + y}  +  \frac{9}{2x - y}  = 6 \\  \\ let \\  \\  \frac{1}{2x + y}  = a \\  \\  \frac{1}{2x - y}  = b \\  \\ so \\  \\ 10a + 3b = 3...eq1 \\  \\ 15a + 9b = 6 \\  \\ or \\  \\ 5a + 3b = 2 \:  \:  \: ...eq2

Solve eq1 and eq2 by elimination method

10a + 3b = 3 \\ 5a + 3b = 2 \\  (- ) \:  \: ( - ) \:  \: ( - ) \\  -  -  -  -  -  -  -  \\ 5a = 1 \\  \\ a =  \frac{1}{5}  \\  \\ put \: value \: of \: a \: in \: eq2 \\  \\ 5( \frac{1}{5} ) + 3b = 2 \\  \\ 3b = 2 - 1 \\  \\ 3b = 1 \\  \\ b =  \frac{1}{3}  \\  \\

Now put these values of a and b in our assumption

 \frac{1}{2x + y}  =  \frac{1}{5}  \\  \\  \frac{1}{2x - y}  =  \frac{1}{3}  \\  \\ on \: cross \: multiplying \\  \\ 2x + y = 5 \\ 2x - y = 3 \\  -  -  -  -  -  -  \\ 4x = 8 \\  \\ x = 2 \\  \\ 2(2) + y = 5 \\  \\ 4 + y = 5 \\  \\ y = 1 \\  \\

Hope it helps you.

Similar questions