Math, asked by man1234512, 6 months ago

solve for x and y :

10x + 3y = 75
6x - 5y = 11​

Answers

Answered by Anonymous
137

Given :

  • 10x + 3y = 75
  • 6x - 5y = 11

To Find :

  • Value of x and y = ?

Solution :

The given equations are :

  • 10x + 3y = 75 - (i)
  • 6x - 5y = 11 - (ii)

From equation (i), we have :

 :  \sf \implies 10x + 3y = 75 \\  \\  :  \sf \implies 10x = 75  - 3y \\ \\   :  \sf \implies x =  \dfrac{75 - 3y}{10}

Now, substitute this in equation (ii) :

 \sf :  \implies 6 \bigg(\dfrac{75 - 3y}{10} \bigg) - 5y = 11  \\  \\ \sf :  \implies  \cancel{6} \bigg(\dfrac{75 - 3y}{\cancel{10}} \bigg) - 5y = 11 \\  \\  \sf :  \implies 3 \bigg(\dfrac{75 - 3y}{5} \bigg) - 5y = 11 \\  \\  \sf :  \implies \dfrac{225 - 9y}{5} - 5y = 11 \\  \\  \sf :  \implies \dfrac{225 - 9y}{5} -  \dfrac{25y}{5} = 11 \\  \\  \sf :  \implies \dfrac{225 - 9y - 25y}{5} = 11 \\  \\  \sf :  \implies 225 - 34y = 11 \times 5 \\  \\ \sf :  \implies 225 - 34y = 55 \\  \\ \sf :  \implies - 34y = 55 - 225 \\  \\ \sf :  \implies  - 34y =  - 170 \\  \\ \sf :  \implies   34y =   170 \\  \\ \sf :  \implies   y =    \cancel{\dfrac{170}{34}}  \\  \\\sf :  \implies y  = 5 \\  \\  \underline{ \boxed{ \bf \therefore \: y = 5}}

Now, substitute y = 5 in equation (i) :

 \sf  : \implies 10x + 3(5) = 75 \\  \\ \sf  : \implies 10x + 15 = 75 \\  \\ \sf  : \implies 10x = 75 - 15 \\  \\ \sf  : \implies 10x = 60 \\  \\ \sf  : \implies x =   \cancel{\dfrac{60}{10}} \\  \\ \sf  : \implies x = 6 \\  \\  \underline{ \boxed{ \bf  \therefore \: x \:  = 6}}

Hence, value of :

  • x = 6
  • y = 5
Answered by chgrgb
7

Answer

x = 6 and y = 5 is right answer

Similar questions