Math, asked by kurshithbegum72, 21 days ago

solve for x and y : 3/2(x+2y)=5 , 3/5(2x-y)=2​

Answers

Answered by mominafatima179
0

Answer:

y=2/3

and x=2

Step-by-step explanation:

hope it helps you

Answered by BrainlyTwinklingstar
4

Answer

\sf \dashrightarrow \dfrac{3}{2} (x + 2y) = 5 \: \: --- (i)

\sf \dashrightarrow \dfrac{3}{5}(2x - y) = 2 \: \: --- (ii)

By first equation,

\sf \dashrightarrow \dfrac{3}{2} (x + 2y) = 5

\sf \dashrightarrow \dfrac{3x}{2} + \dfrac{6y}{2} = 5

\sf \dashrightarrow \dfrac{3x + 6y}{2} = 5

\sf \dashrightarrow 3x + 6y = 5 \times 2

\sf \dashrightarrow 3x + 6y = 10 \: \: --- (iii)

By second equation,

\sf \dashrightarrow \dfrac{3}{5} (2x - y) = 2

\sf \dashrightarrow \dfrac{6x}{5} - \dfrac{3y}{5} = 2

\sf \dashrightarrow \dfrac{6x - 3y}{5} = 2

\sf \dashrightarrow 6x - 3y = 5 \times 2

\sf \dashrightarrow 6x - 3y = 10 \: \: --- (iv)

Now, by third equation,

\sf \dashrightarrow 3x + 6y = 10

\sf \dashrightarrow 3x = 10 - 6y

\sf \dashrightarrow x = \dfrac{10 - 6y}{3}

Now, let's find the value of y by fourth equation.

\sf \dashrightarrow 6x - 3y = 10

\sf \dashrightarrow 6 \bigg( \dfrac{10 - 6y}{3} \bigg) - 3y = 10

\sf \dashrightarrow \dfrac{60 - 36y}{3} - 3y = 10

\sf \dashrightarrow \dfrac{60 - 36y - 9y}{3} = 10

\sf \dashrightarrow \dfrac{60 - 45y}{3} = 10

\sf \dashrightarrow 60 - 45y = 10 \times 3

\sf \dashrightarrow 60 - 45y = 30

\sf \dashrightarrow -45y = 30 - 60

\sf \dashrightarrow -45y = -30

\sf \dashrightarrow y = \dfrac{-30}{-45}

\sf \dashrightarrow y = \dfrac{2}{3}

Now, let's find the value of y by fourth equation.

\sf \dashrightarrow 6x - 3y = 10

\sf \dashrightarrow 6x - 3 \bigg( \dfrac{2}{3} \bigg) = 10

\sf \dashrightarrow 6x - \dfrac{6}{3} = 10

\sf \dashrightarrow 6x - 2 = 10

\sf \dashrightarrow 6x = 10 + 2

\sf \dashrightarrow 6x = 12

\sf \dashrightarrow x = \dfrac{12}{6}

\sf \dashrightarrow x = 2

Hence, the values of x and y are 2 and 2/3 respectively.

Similar questions