Math, asked by robinjot94170, 8 months ago

Solve for x and y: 4x + 9y = 72 6x +
15y = 90​

Answers

Answered by nalanagulajagadeesh
1

Answer:

given,

4x+9y=72,---->eqn1

6x+15y=90,

=>2x+5y=30,

=>4x+10y=60,

=>4x=60-10y,----->eqn2

substitute eqn 2 in eqn 1,

60-10y+9y=72,

=>y=-12,x=45.

Hope it helps u...

Answered by silentlover45
11

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

\large\underline{Given:-}

  • \: \: \: \: \: {4x} \: + \: {9y} \: \: = \: \: {72}
  • \: \: \: \: \: {6x} \: + \: {15y} \: \: = \: \: {90}

\large\underline{To find:-}

  • find the value of x and y.....?

\large\underline{Solutions:-}

\: \: \: \: \: \star \: \: \: {4x} \: + \: {9y} \: \: = \: \: {72} \: \: \: \: \: .....{(i)}.

\: \: \: \: \: \star \: \: \:{6x} \: + \: {15y} \: \: = \: \: {90} \: \: \: \: \: .....{(ii)}.

»★ multiplying Eq. (i) by 6 and Eq. (ii) by 4 , we get.

\: \: \: \: \: \star \: \: \: {24x} \: + \: {54y} \: \: = \: \: {432} \: \: \: \: \: .....{(iii)}.

\: \: \: \: \: \star \: \: \: {24x} \: + \: {60y} \: \: = \: \: {360} \: \: \: \: \: .....{(iv)}.

»★ Subtracting Eq. (iii) from Eq. (iv).

 {24x} \: + \: {54y} \: \: = \: \: {432} \\ {24x} \: + \: {60y} \: \: = \: \: {360} \\ \underline{- \: \: \: \: \: \: \: - \: \: \: \: \: \: \: \: \: \: \: = \: \: \: \: - \: \: \: \: \: \: \: \: \: \: } \\ \: \: \: \: \: \: \: \: \: \: \: {6y} \: \: \: = \: \: \: {72}

\: \: \: \: \: \leadsto \: \: {y} \: \: = \: \: \frac{72}{6}

\: \: \: \: \: \leadsto \: \: {y} \: \: = \: \: {12}

»★ Now, putting the value y in Eq. (i)

\: \: \: \: \: \leadsto \: \: {4x} \: + \: {9y} \: \: = \: \: {72}

\: \: \: \: \: \leadsto \: \: {4x} \: + \: {9} \: \times \: {12} \: \: = \: \: {72}

\: \: \: \: \: \leadsto \: \: {4x} \: + \: {108} \: \: = \: \: {72}

\: \: \: \: \: \leadsto \: \: {4x} \: \: = \: \: {72} \: - \: {108}

\: \: \: \: \: \leadsto \: \: {4x} \: \: = \: \: {-36}

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: \frac{-36}{4}

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {-6}

»★ Hence,

\: \: \: \: \: The \: \: value \: \: of \: \: x \: \: and \: \: y \: \: is  \: \: {-6} \: \: and \: \: {12}.

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

Similar questions