Math, asked by sinha202aditya1, 2 months ago

Solve for x and y,
5/x-1 +1/y-2=2 and 6/x-1 -3/y-2=1

Answers

Answered by shinejaipur2006
0

Answer:

advert is 6

I hope this will help you

Answered by BrainlyTwinklingstar
6

Answer

\sf \dashrightarrow \dfrac{5}{x - 1} + \dfrac{1}{y - 2} = 2 \: \: --- (i)

\sf \dashrightarrow \dfrac{6}{x - 1} + \dfrac{-3}{y - 2} = 1 \: \: --- (ii)

Let \sf \dfrac{1}{x - 1} be u.

Let \sf \dfrac{1}{y - 2} be v.

So, the equations become

\sf \dashrightarrow 5u + v = 2

\sf \dashrightarrow 6u - 3v = 1

By first equation,

\sf \dashrightarrow 5u + v = 2

\sf \dashrightarrow 5u = 2 - v

\sf \dashrightarrow u = \dfrac{2 - v}{5}

Now, we should find the value of y by second equation.

\sf \dashrightarrow 6u - 3v = 1

\sf \dashrightarrow 6 \bigg( \dfrac{2 - v}{5} \bigg) - 3v = 1

\sf \dashrightarrow \dfrac{12 - 6v}{5} - 3v = 1

\sf \dashrightarrow \dfrac{12 - 6v - 15v}{5} = 1

\sf \dashrightarrow \dfrac{12 - 21v}{5} = 1

\sf \dashrightarrow 12 - 21v = 5

\sf \dashrightarrow -21v = 5 - 12

\sf \dashrightarrow -21v = -7

\sf \dashrightarrow v = \dfrac{-7}{-21}

\sf \dashrightarrow v = \dfrac{1}{3}

Now, we can find the value of u by first equation.

\sf \dashrightarrow 5u + v = 2

\sf \dashrightarrow 5u + \dfrac{1}{3} = 2

\sf \dashrightarrow \dfrac{15u + 1}{3} = 2

\sf \dashrightarrow 15u + 1 = 3 \times 2

\sf \dashrightarrow 15u + 1 = 6

\sf \dashrightarrow 15u = 6 - 1

\sf \dashrightarrow 15u = 5

\sf \dashrightarrow u = \dfrac{5}{15}

\sf \dashrightarrow u = \dfrac{1}{3}

Now, we can find the values of x and y.

We know that,

\sf \dashrightarrow \dfrac{1}{x - 1} = u

\sf \dashrightarrow \dfrac{1}{x - 1} = \dfrac{1}{3}

\sf \dashrightarrow 3 = 1 (x - 1)

\sf \dashrightarrow 3 = x - 1

\sf \dashrightarrow x = 3 + 1

\sf \dashrightarrow x = 4

We also know that,

\sf \dashrightarrow \dfrac{1}{y - 2} = v

\sf \dashrightarrow \dfrac{1}{y - 2} = \dfrac{1}{3}

\sf \dashrightarrow 3 = 1 (y - 2)

\sf \dashrightarrow 3 = y - 2

\sf \dashrightarrow y = 3 + 2

\sf \dashrightarrow y = 5

Hence, the values of x and y are 4 and 5 respectively.

Similar questions