Math, asked by goswamipramod762, 8 months ago

solve for x and y
5/x+y 1/x-y =2 , 15/x+y - 5/x-y =-2

Answers

Answered by Anonymous
3

 \frac{5}{x + y} + \frac{1}{x - y} = 2 -------> 1

 \frac{15}{x + y} - \frac{5}{x - y} = -2 --------> 2

Let  \frac{1}{x + y} = u \:and \frac{1}{x - y} = v

⇒ 5u + v = 2------> 3

v = 2 - 5u

⇒ 15u - 5v = -2 --------> 4

Putting eq. 3 in eq. 4

15u - 5 (2 - 5u) = -2

15u - 10 + 25u = -2

40u = -2 + 10

40u = 8

u =  \frac{8}{40}

u =  \frac{1}{5}

Putting value of u in eq. 3

5 (  \frac{1}{5} ) + v = 2

1 + v = 2

v = 2 - 1

 \fbox v = 1

 \frac{1}{x + y} = u

 \frac{1}{x + y} = \frac{1}{5}

⇒ x + y = 5

x = 5 - y ------ > 5

 \frac{1}{x - y} = v

 \frac{1}{x - y} = 1

⇒ x - y = 1

Putting the value of x from eq.5

5 - y - y = 1

5 - 2y = 1

- 2y = 1 - 5

- 2y = - 4

 y = \frac{- 4}{- 2}

 \fbox y=2

Putting this value in eq 5

x = 5 - 2

 \fbox x=3

PLEASE MARK IT BRAINILIEST

Answered by Anonymous
0

Answer:

hope it's correct mate

Attachments:
Similar questions