Math, asked by gulshanrvvarma, 10 months ago

solve for x and y 6 upon x minus y - 3 1 by minus 2 is equal to 1, 5 upon x minus 1 + 1 upon y minus 2 is equal to 2 where x is not equal to 1 and bi is not equal to 2​

Answers

Answered by MaheswariS
7

\textbf{Given:}

\textsf{Equations are}

\mathsf{\dfrac{6}{x-1}-\dfrac{3}{y-2}=1}

\mathsf{\dfrac{5}{x-1}+\dfrac{1}{y-2}=2}

\textbf{To find:}

\textsf{Solution of the given equations}

\textbf{Solution:}

\mathsf{\dfrac{6}{x-1}-\dfrac{3}{y-2}=1}......(1)

\mathsf{\dfrac{5}{x-1}+\dfrac{1}{y-2}=2}.......(2)

\mathsf{(1)+3{\times}(2)\implies}

\mathsf{\dfrac{6}{x-1}-\dfrac{3}{y-2}=1}

\mathsf{\dfrac{15}{x-1}+\dfrac{3}{y-2}=6}

\mathsf{\dfrac{21}{x-1}=7}

\mathsf{\dfrac{3}{x-1}=1}

\mathsf{3=x-1}

\implies\mathsf{x=3+1}

\implies\boxed{\mathsf{x=4}}

\mathsf{put\;x=4\;in\;(1)\;we\;get}

\mathsf{\dfrac{6}{3}-\dfrac{3}{y-2}=1}

\mathsf{2-\dfrac{3}{y-2}=1}

\mathsf{2-1=\dfrac{3}{y-2}}

\mathsf{1=\dfrac{3}{y-2}}

\mathsf{3=y-2}

\mathsf{y=3+2}

\implies\boxed{\mathsf{y=5}}

\textbf{Answer:}

\textsf{Solution is x=4 and y=5}

\textbf{Find more:}

Solve the following pair of equations by reducing them to a pair of linear equation.

5/x+y +1/x-y =2 and

10/x+y+3/x-y =5​

https://brainly.in/question/15071188

Similar questions