Math, asked by Mithunmathew, 1 year ago

solve for x and y (a-b)X + (a + b)Y = a^2-2 a b-b^2 (a + b) (X + Y) =a^2+b^2


Mithunmathew: tnku

Answers

Answered by Anonymous
9
\textbf{Answer}

y = \frac{ - 2ab}{a + b}

x = a + b

\textbf{Step- By-Step Solution}

\textbf{Equation(1)}

 (a - b)x + (a + b)y = {a}^{2} - 2ab - {b}^{2}

\textbf{Equation.2}

(a + b)(x + y) = {a}^{2} + {b}^{2}

 = (a + b)x + (a + b)y = {a}^{2} + {b}^{2}

\textbf{On , Solving These Equations}

\textbf{Step.1 }
(a + b)x - (a - b)x = {a}^{2} + {b}^{2} - ( {a}^{2} - 2ab - {b}^{2} )

\textbf{Step.2}

ax + bx - ax + bx = {a}^{2} + {b}^{2} - {a}^{2} + 2ab + {b}^{2}

\textbf{Step.3}

On cancel same term

2bx = 2 {b}^{2} + 2ab

\textbf{Step4}

x = \frac{2 {b}^{2} + 2ab }{2b}

\textbf{Step .5}

x = \frac{ {b}^{2} + ab }{b}

\textbf{Step 6}

x = \frac{b(b + a)}{b}

\textbf{Step 7}

x = b+ a

\textbf{Value of Y}

\textbf{Step 1}

put value of X in eq \textbf{1}

(a - b)(b + a) + (a + b)y = {a}^{2} - 2ab

\textbf{Step 2}

 {a}^{2} - {b}^{2} + (a + b)y = {a}^{2} - 2ab

\textbf{Step 3}

(a + b)y = {a}^{2} - 2ab + {b}^{2} - {a}^{2}

\textbf{Step 4}

(a + b)y = {b}^{2} - 2ab

\textbf{Step 5}

y = \frac{ {b}^{2} - 2ab }{a + b}

\textbf{Hence}

\textbf{Value of X }

x = a + b

\textbf{Value of Y}

y = \frac{ - 2ab}{a + b}

Anonymous: try once again
Mithunmathew: Ok but what is urbame
Mithunmathew: Ok but what is ur name
Anonymous: I'll type my username in my bio
Mithunmathew: no dangle it is not coming sry....
Anonymous: oh
Anonymous: learn it. and text me whenever it comes
Mithunmathew: Ok yaar
Anonymous: thanks :)
Mithunmathew: bye....c u soon
Answered by freefirelover420
0

Answer:

hello i will give ansewer in few mins

Step-by-step explanation:

Similar questions