Solve for x and y:
( a - b )x + ( a + b )y = a^2 - 2ab - b^2
( a + b)( x + y ) = a^2 + b^2
Answers
Answer:
x = a + b
y = - 2 ab / ( a + b )
Step-by-step explanation:
Given :
( a - b ) x + ( a + b ) y = a² - 2 ab - b² .............( 1 )
Also :
( a + b )( x + y ) = a² + b²
= ( a + b ) x + ( a + b ) y = a² + b² .................( 2 )
Subtract ( 2 ) from ( 1 ) to get :
( a - b ) x - ( a + b ) x = a² - 2 ab - b² - a² - b²
= > ( a - b ) x - ( a + b ) x = - 2 ab - 2 b²
= > a x - b x - a x - b x = - 2 ab - 2 b²
= > - 2 bx = - 2 ab - 2 b²
= > - 2 bx = - 2 b ( a + b )
= > x = ( a + b )
Solve for y in the equation 2 :
( a + b ) x + ( a + b ) y = a² + b²
= > ( a + b ) ( a + b ) + ( a + b ) y = a² + b²
= > ( a + b )² + ( a + b ) y = a² + b²
= > ( a + b ) y = a² + b² - ( a + b )²
= > ( a + b ) y = a² + b² - a² - b² - 2 ab
= > ( a + b ) y = - 2 ab
= > y = - 2 ab / ( a + b )