Solve for x and y . (a-b)x + (a+b)y = a^2 -2ab-b^2 And (a+b) (x+y)= a^2 + b^2?
Answers
Answered by
15
(a-b)x +(a+b)y = a^2-2ab - b^2 ,eq(1)
(a+b)x + (a+b)y = a^2 + b^2 ,eq(2)
eq(2)-eq(1) = (a+b)x - (a-b)x = 2b^2 +2ab
2bx = 2b(b + a)
x = a + b
in eq(2)
(a+b)^2 + (a+b)y = a^2 + b^2
2ab + (a+b)y = 0
y = -2ab/(a+b)
(a+b)x + (a+b)y = a^2 + b^2 ,eq(2)
eq(2)-eq(1) = (a+b)x - (a-b)x = 2b^2 +2ab
2bx = 2b(b + a)
x = a + b
in eq(2)
(a+b)^2 + (a+b)y = a^2 + b^2
2ab + (a+b)y = 0
y = -2ab/(a+b)
ak4717:
hi........ riddhi it brainliest if this will hrlp you
Similar questions