Solve for x and y: (a-b)x+(a+b)y=a2 - 2ab - b2 ; [a+b] + [a+b]y =a2 + b2
Answers
Answer:
x = a+b , y = - 2ab /(a+b)
Step-by-step explanation:
How do you solve (a-b) x + (a + b) y = a² - 2ab - b² , (a + b) (x + y) = a² + b²?
(a-b) x + (a + b) y = a² - 2ab - b²…………(1)
(a + b) (x + y) = a² + b²……………………(2)
Equation (2) can be written as (a + b)x+ (a+b) y = a² + b²………….(3)
Now we have to solve equation (1) and (3)
(a-b) x + (a + b) y = a² - 2ab - b²,…………(1)
(a + b)x+ (a+b) y = a² + b²………….(3)
Subtracting equation (3) from (1) we get
(a-b-a-b) x = a² - 2ab - b²- a² - b²
-2b x = - 2ab -2 b²
-2b x =-2b(a+b)
dividing both sides by -2b
x = a+b
Now substitude x=a+b in equation (1) we get
(a-b)(a+b) + (a + b) y = a² - 2ab - b²
a² - b² + + (a + b) y = a² - 2ab - b²
Subtracting a² - b² from both the sides
(a + b) y = a² - 2ab - b² - a² + b²
(a + b) y = - 2ab
y = - 2ab /(a+b)
Answer x = a+b , y = - 2ab /(a+b)