Math, asked by SUMMAIYAH, 1 year ago

solve for x and y (a-b)x+(a+b)y=a2-2ab-b2 (a+b)(x+y)=a2+b2.

I want the solution as quickly as possible

Attachments:

Answers

Answered by Thatsomeone
476
Hey user

Here is your answer :-

(a - b)x + (a + b)y =  {a}^{2} - 2ab  -   {b}^{2}  \:  \:  \:  \:  \:  \:  \: ...(1) \\  \\ (a + b)(x + y) =  {a}^{2}  +  {b}^{2} \\  \\ (a + b)x + (a + b )y =  {a}^{2}  +  {b}^{2}  \:  \:  \:  \:  \:  \:  \: ...(2) \\  \\ subtracting \:  \: equations \: (1) \: from \: equation\: (2) we \: get \:  \\  \\ (a + b)x - (a - b)x = 2ab +  2{b}^{2} \\  \\ ax + bx - ax + bx = 2b(a + b) \\  \\ 2bx =  2b(a + b) \\  \\ x = a + b \\  \\ putting \: the \: value \: of \: x \: in \: equation \: (2) \: we \: get \:  \\  \\ (a + b )( a+ b) + ( a+ b)y =  {a}^{2}  +  {b}^{2}  \\  \\  {a}^{2}  + 2ab +  {b}^{2}  + ( a+ b)y =  {a}^{2}  +  {b}^{2}  \\  \\ ( a+ b)y =  - 2ab \\  \\ y =  \frac{ - 2ab}{a + b}

thank you.

Thatsomeone: it is easiest way
SUMMAIYAH: OK thanks
Thatsomeone: you got it ?
SUMMAIYAH: I guess it is not by cross multiplication method. right?
Thatsomeone: ya
SUMMAIYAH: Hmm.. anyways Thanks for your help
Thatsomeone: which part you don't understand
SUMMAIYAH: i understood
SUMMAIYAH: everything
Thatsomeone: ok
Answered by tejasgupta
153

Answer:

\boxed{\underline{\boxed{\bold{x = \dfrac{(a^2 + b + ab)}{(a+b)}}}}}\\\\\\\text{And,}\\\boxed{\underline{\boxed{\bold{y = -\dfrac{2ab}{(a+b)}}}}}\\

Step-by-step explanation:

\text{Given pair of linear equations in two variables:}\\\\(a-b)x + (a+b)y = a^2 - 2ab - b^2\\\\(a+b)(x+y) = a^2 + b^2\\\\\text{Simplifying the second equation, we get}\\\\(a+b)x + (a+b)y = a^2 + b^2\\\\\text{A standard pair of linear equations in two variables is}\\\\\text{of the form:}\\\\A_{1}x + B_{1}y = C_{1}\\\\\text{and}\\\\A_{2}x + B_{2}y = C_{2}\\\\\text{On comparing the given pair of linear equations}\\\\\text{in two variables with a standard pair of linear}\\

\\\text{equations in two variables, we get}\\\\\begin{array}{| c | c | c | c | c| c |}\cline{1-6} A_1 & (a-b) & B_1 & (a+b) & C_1 & (a^2-2ab-b^2) \\\cline{1-6} A_2 & (a+b) & B_2 & (a+b) & C_2 & (a^2 + b^2) \\\cline{1-6}\end{array}\\\\\\\text{Using the cross multiplication formula for solving}\\\\\text{a pair of linear equations in two variables, we get}\\\\\dfrac{x}{B_1 C_2 - B_2 C_1} = \dfrac{y}{C_1 A_2 - C_2 A_1} = -\dfrac{1}{A_1 B_2 - A_2 B_1}\\\\\\

\implies \dfrac{x}{(a+b)(a^2 + b^2) - (a+b)(a^2 - 2ab - b^2)}\\\\\\= \dfrac{y}{(a^2 - 2ab - b^2)(a+b) - (a^2 + b^2)(a-b)}\\\\\\= - \dfrac{1}{(a-b)(a+b) - (a+b)(a+b)}\\\\\\\\\implies \dfrac{x}{a^3 + ab^2 + a^2b + b^3 - (a^3 -2a^2b - ab^2 + a^2b - 2ab^2 -b^3)}\\\\\\= \dfrac{y}{a^3 -2a^2b - ab^2 + a^2b - 2ab^2 - b^3 - (a^3 + ab^2 -a^2b - b^3)}\\\\\\= - \dfrac{1}{a^2 - b^2 - (a^2+ b^2+ 2ab)}\\\\\\\\\implies \dfrac{x}{a^3 + b^3 + a^2b + ab^2 - (a^3 - b^3 -a^2b - 3ab^2)}\\\\\\

= \dfrac{y}{a^3 - b^3 - a^2b - 3ab^2 - a^3 - ab^2 + a^2b + b^3}\\\\\\= - \dfrac{1}{a^2 - b^2 -a^2 - b^2 - 2ab}\\\\\\\\\implies \dfrac{x}{a^3 + b^3 + a^2b + ab^2 -a^3 + b^3 +a^2b + 3ab^2}\\\\\\= \dfrac{y}{-4ab^2} = - \dfrac{1}{-2b^2 - 2ab}\\\\\\\\\implies \dfrac{x}{2b^3 + 2a^2b +4ab^2} = -\dfrac{y}{4ab^2} = \dfrac{-1}{-2b(a+b)}\\\\\\\implies \dfrac{x}{2b(b + a^2 + ab)} = -\dfrac{y}{4ab^2} = \dfrac{1}{2b(a+b)}\\\\\\\\

\text{On comparing $\dfrac{x}{2b(b + a^2 + ab)}$ with $\dfrac{1}{2b(a+b)}$, we get}\\\\\\x = \dfrac{2b(a^2 + b + ab)}{2b(a+b)}\\\\\\\implies \boxed{\underline{\boxed{\bold{x = \dfrac{(a^2 + b + ab)}{(a+b)}}}}}\\\\\\\\\text{And on comparing $-\dfrac{y}{4ab^2}$ with $\dfrac{1}{2b(a+b)}$, we get}\\\\\\y = \dfrac{-4ab^2}{2b(a+b)}\\\\\\\implies \boxed{\underline{\boxed{\bold{y = -\dfrac{2ab}{(a+b)}}}}}

Similar questions