Solve for X and y
(a-b)X + (a+b)y = a² - 2ab - b² ; (a+b) (X+y) = a²+b²
Please fast
I mark brainliest
Answers
Answer:
x = a + b, y = -2ab/a + b
Step-by-step explanation:
Given Equations are:
(i) (a - b)x + (a + b)y = a² - 2ab - b²
(ii) (a + b)(x + y) = a² + b²
(a + b)x + (a + b)y = a² + b²
Subtracting (i) - (ii), we get
⇒ {(a - b)x + (a + b)y} - {(a + b)x + (a + b)y} = {a² - 2ab - b²} - {a² + b²}
⇒ (a - b)x + (a + b)y - (a + b)x - (a + b)y = a² - 2ab - b² - a² - b²
⇒ (a - b)x - (a + b)x = -2ab - 2b²
⇒ ax - bx - ax - bx = -2b(a + b)
⇒ -2bx = -2b(a + b)
⇒ x = a + b
⇒ x = a + b
Substitute x = a + b in (i), we get
⇒ (a - b)x + (a + b)y = a² - 2ab - b²
⇒ (a - b)(a + b) + (a + b)y = a² - 2ab - b²
⇒ (a - b)(a + b) + (a + b)y = a² - 2ab - b²
⇒ (a² - b²) + (a + b)y = a² - 2ab - b²
⇒ (a + b)y = a² - 2ab - b² - (a² - b²)
⇒ (a + b)y = a² - 2ab - b² - a² + b²
⇒ (a + b)y = -2ab
⇒ y = -2ab/a + b.
Hope it helps!
(a-b)x +(a+b)y =a^2 -2ab-b^2 .... eq1
(a+b)(x+y)=a^2+b^2 ................ eq 2
subtract eq1 to eq 2, or either
2bx = 2ab + 2b^2
x = a + b
substitute x = a + b, to eq 1
(a-b)(a + b) + (a+b)y =a^2 - 2ab - b^2
a^2 - b^2 + (a+b)y =a^2 - 2ab - b^2
y = 2ab/(a+b)