CBSE BOARD X, asked by pathaksurbhi153, 10 months ago

Solve for x and y
ax + by = 1 ;
ay + bx = 2ab/(a^2 + b^2)
please give only answer​

Answers

Answered by pallavisrinivas2004
1

Answer:

ax+by=1................(i)

bx+ay=2ab/a² + b² .......................(ii)

ax+by=1    .................. *a

a²x + aby = a ....................(iii)

bx+ay=2ab/(a² + b²).......................* b

b ² x +aby = 2ab² /(a² + b²)..........(iv)

subtracting eq (iv) from (iii)

a²x + aby = a - [b ² x +aby = 2ab² /(a² + b²)]

a²x - b²x + aby - aby  = a -2ab² /(a² + b²)

(a² - b²)x = [a(a² + b²) - 2ab²]/(a² + b²)

(a² - b²)x = [a³ + ab² - 2ab²]/(a² + b²)

(a² - b²)x = [a³ - ab²]/(a² + b²)

x = [a(a² - b²)] / (a² + b²)(a² - b²)

x = a/ (a² + b²)

putting x in (i)

ax+by=1

a [a/ (a² + b²)] +by = 1

a²/(a² + b²) + by = 1

by = 1 - a²/(a² + b²)

by = [a² + b² - a²]/a² + b²

by = b²/a² + b²

y = b²/(a² + b²)(b)

y = b/a² + b²

Therefore,

x  = a/ (a² + b²)

y = b/a² + b²

follow me ✌✌

mark as brainliest answer ❤❤❤❤

Similar questions