solve for x and y: ax+by=a-b and bx-ay=a+b
Answers
Answered by
0
[math]ax+by=a-b \cdots (1)[/math]
[math]bx-ay=a+b \cdots (2)[/math]
[math](1)×a \implies a^2x+aby = a^2-ab \cdots (3)[/math]
[math](2)×b \implies b^2x-aby = ab+b^2 \cdots (4)[/math]
Adding the like terms of both equations,
[math](a^2+b^2)x = a^2-ab+ab+b^2[/math]
[math]\implies (a^2+b^2)x = a^2+b^2[/math]
[[math]\because \text{+aby and -aby gets cancelled}[/math]]
[math]\implies x = \dfrac{a^2+b^2}{a^2+b^2}[/math]
[math]\implies \boxed{x = 1}[/math]
Substitute x=1 in equation (1).
[math]a(1) + by = a -b[/math]
[math]a + by = a -b[/math]
[math]by = a-b-a[/math]
[math]by = -b[/math]
[math]y = \dfrac{-b}{b}[/math]
[math]\implies \boxed{y=-1}[/math]
Therefore, solution is [math]\hspace{1mm} (x,y) = (1,-1)[/math]
[math]bx-ay=a+b \cdots (2)[/math]
[math](1)×a \implies a^2x+aby = a^2-ab \cdots (3)[/math]
[math](2)×b \implies b^2x-aby = ab+b^2 \cdots (4)[/math]
Adding the like terms of both equations,
[math](a^2+b^2)x = a^2-ab+ab+b^2[/math]
[math]\implies (a^2+b^2)x = a^2+b^2[/math]
[[math]\because \text{+aby and -aby gets cancelled}[/math]]
[math]\implies x = \dfrac{a^2+b^2}{a^2+b^2}[/math]
[math]\implies \boxed{x = 1}[/math]
Substitute x=1 in equation (1).
[math]a(1) + by = a -b[/math]
[math]a + by = a -b[/math]
[math]by = a-b-a[/math]
[math]by = -b[/math]
[math]y = \dfrac{-b}{b}[/math]
[math]\implies \boxed{y=-1}[/math]
Therefore, solution is [math]\hspace{1mm} (x,y) = (1,-1)[/math]
Answered by
6
Your answer is x = 1 & y = - 1
Attachments:
hardeechoudhary:
howw
Similar questions
Biology,
7 months ago
Social Sciences,
7 months ago
Math,
7 months ago
Sociology,
1 year ago
History,
1 year ago