solve for x and y. ax/y + by/a = a+b, ax - by= 2ab.
Answers
Answer:
ax - by = 2ab … (2)
Multiplying by ab to (1) and a to (2), we get
a²x – b²y = a²b + ab²… (3)
a²x – aby = 2a2b … (4)
Subtracting equation (4) from equation (3),
(a²x – a²x) + ( - aby) – ( - b²y) = (2a²b - a²b) – ab²
⇒ - aby + b²y = a²b – ab²
⇒ by(b – a) = ab(a – b)
⇒ y = b(b – a) / ab(a – b)
⇒ y = - a
Substitute y value in (2),
ax – b( - a) = 2ab
⇒ ax + ab = 2ab
⇒ ax = ab
⇒ x = b
Step-by-step explanation:
ax/y + by/a = a+b -----> eq(1)
ax - by= 2ab -----> eq(2)
from equation (2)/y :
ax/y - b = 2ab/y
ax/y = (2ab/y)+ b
from equation (1)
2ab/y + b + by/a = a+b
2ab/y + by/a = a
2a^2.b + by^2 = a^2 y
by^2 - a^2 y + 2a^2.b = 0
y 1 = a^2 + √a^4-8a^2.b^2 / 2b
y 2 = a^2 - √a^4-8a^2.b^2 / 2b
from equation 2 :
x = 2b+(by/a)
x = 2b + b(a^2 + √a^4-8a^2.b^2 / 2b)/a
x 1 = b(a+√a^2-8b^2 +2 )
x 2 = b(a-√a^2-8b^2 +2 )