Math, asked by wqerty, 8 months ago

Solve for x and y by the method of cross multiplication: 4x – 3y –1 = 0 ; 5x – 7y = –2

Answers

Answered by Anonymous
19

{\underline{\underline{\red{\sf{Given:}}}}}

  • A linear equation in two variable.
  • To solve for x & y .

{\underline{\underline{\red{\sf{To\:Find}}}}}

  • Value of x and y .
  • We have to solve by cross multiplication method.

{\underline{\underline{\red{\sf{Concept\:Used}}}}}

  • We will use the formula of 'Method of Cross-multiplication ' for finding the values of x and y .

{\underline{\underline{\red{\sf{Answer:}}}}}

We have been given two linear equations which are

  • \sf{4x-3y-1=0}
  • \sf{5x-7y+2=0}

\sf{\pink{With\:respect\:to\:Standard\:Form}}

\sf{ a_{1}=4\:\:\:\:\:\:\:b_{1}=(-3)\:\:\:\:\:\:\:c_{1}=(-1)}

\sf{ a_{2}=5\:\:\:\:\:\:\:b_{2}=(-7)\:\:\:\:\:\:\:c_{2}=(2)}

{\underline{\purple{\sf{The\:formula\:is\: stated\:as}}}}

\large\red{\boxed{\blue{\bf{\dfrac{x}{(b_{1}c_{2}-b_{2}c_{1})}=\dfrac{y}{c_{1}a_{2}-c_{2}a_{1}}=\dfrac{1}{a_{1}b_{2}-a_{2}b_{1}}}}}}

\sf{\green{On\: putting\: the\:values}}

\sf{\implies \dfrac{x}{(-3\times2)-(-1\times-7)}=\dfrac{y}{(4\times2)-(5\times(-1))}=\dfrac{1}{(7\times(-4))-(-5\times3)}}

\sf{\implies \dfrac{x}{-6-7}=\dfrac{y}{8+5}=\dfrac{1}{-28+15}}

\sf{\implies \dfrac{x}{-13}=\dfrac{y}{13}=\dfrac{1}{-13}}

\sf{\implies \dfrac{x}{-13}=\dfrac{1}{-13}}

{\underline{\boxed{\orange{\sf{\mapsto x =1}}}}}

\sf{\dfrac{y}{13}=\dfrac{1}{-13}}

{\underline{\boxed{\orange{\sf{\mapsto y =-1}}}}}

Therefore ,

  • x =1
  • y=(-1)
Similar questions