solve for 'x' and' y' , if x²-y²=3(x+y)=5(x-y)
Answers
3(x+y)=5(x-y)
(x+y)/5=(x-y)/3
3x+3y=5x-5y
3x-5x=-3y-5y
-2x=-8y
x=4y
x^2-y^2=3(x+y)...(given)
=(x+y)(x-y)=3(x+y)...(x^2-y^2=(x+y)(x-y))
substitute x=4y
4y+y×3y=12y+3y
15y^2=15y15y^2-15y=0
on solving thisy=0or y=1
substitute y=0 we get x=0 and y=1 we get x= 4
therefore x=0,y=0 and x=4andy=1 is the answer
hope you like it
Answer:
(1) : x² - y² = 3
(2) : xy = 2 → y = 2/x
Restart from the equation (1)
x² - y² = 3 → you know that: y = 2/x
x² - (2/x)² = 3
x² - (4/x²) = 3
(x^4 - 4)/x² = 3
x^4 - 4 = 3x²
x^4 - 3x² - 4 = 0 → let: X = x² → where X ≥ 0
X² - 3X - 4 = 0
X² - (4X - X) - 4 = 0
X² - 4X + X - 4 = 0
(X² - 4X) + (X - 4) = 0
X.(X - 4) + (X - 4) = 0
(X + 1).(X - 4) = 0
First case: (X + 1) = 0 → X + 1 = 0 → X = - 1 ← no possible because the condition
Second case: (X - 4) = 0 → X - 4 = 0 → X = 4 ← possible
Recall: X = x² → x² = 4 → x = ± 2
First solution: x = 2
y = 2/x
→ y = 1
Second solution: x = - 2
y = 2/x
→ y = - 1