Math, asked by jashangarg201, 9 months ago

solve for x and y

please solve it urgently​

Attachments:

Answers

Answered by Anonymous
1

x - y =a +b

ax +by = a² - b²

    x/ -a²-ab+b²-b² = y/a²+ab-a²+b² = -1/-a-b

x/ -a²-ab =1/ a+b

x = -a(a + b)/a+b

x = -a

y/b²+ab = 1/a +b

y = b(a+b)/a+b

y =b

Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

x + y = a + b.........(1)

ax - by =  {a}^{2}  -  {b}^{2}  \:  \: .......(2)

TO DETERMINE

The value of x & y

CALCULATION

BY CROSS MULTIPLICATION RULE WE GET

 \displaystyle \:  \:  \frac{x}{( {a}^{2}  -  {b}^{2}) + b(a + b) }  =  \frac{y}{a(a + b) - ( {a}^{2} -  {b}^{2}  )}  =  \frac{1}{  b  + a}

  \implies \: \displaystyle \:  \:  \frac{x}{( {a}^{2}  -  {b}^{2} + ba +  {b}^{2} ) }  =  \frac{y}{({a}^{2}  + ab-  {a}^{2}  +  {b}^{2}  )}  =  \frac{1}{ ( b  +  a)}

  \implies \: \displaystyle \:  \:  \frac{x}{( {a}^{2}   + ba  ) }  =  \frac{y}{( ab +  {b}^{2}  )}  =  \frac{1}{ ( b  +  a)}

  \implies \: \displaystyle \:  \:  \frac{x}{a( {a} + b) }  =  \frac{y}{b( a +  {b}  )}  =  \frac{1}{ (  a + b)}

Now

 \displaystyle \:  \:  \frac{x}{a( {a} + b) }  =  \frac{1}{ (  a + b)}  \:  \:  \: gives

   \displaystyle \:  \:  \frac{x}{a}=   1

 \therefore \: x \:  = a

Again

   \displaystyle \:  \: \frac{y}{b( a +  {b}  )}  =  \frac{1}{ (  a + b)} gives

 \implies \: \displaystyle \:  \ \frac{y}{b}  =  1

 \therefore \: y \:  = b

RESULT

So the required solution is

x \:  = a \:  \:  \:  \: and \:  \:  \: y \:  = b

Similar questions