Math, asked by vanshikabairoliya, 11 months ago

Solve for x and y:
\frac{2}{x} + \frac{3}{y} = 2
\frac{1}{x} - \frac{1}{2y} = \frac{1}{3}
x≠0 , y≠0

I'll mark brainliest!

Answers

Answered by TrickYwriTer
6

Step-by-step explanation:

Given -

2/x + 3/y = 2

1/x - 1/2y = 1/3

To Find -

Value of x and y

By Elimination method :-

Now,

[ 2/x + 3/y = 2 ] × 1

[ 1/x - 1/2y = 1/3 ] × 2

» 2/x + 3/y = 2

2/x - 1/y = 2/3

(-) (+) (-)

______________

3/y + 1/y = 2 - 2/3 (By Subtracting)

» 3 + 1/y = 6 - 2/3

» 4/y = 4/3

  • » y = 3

Substituting the value of y on 2/x + 3/y = 2

» 2/x + 3/3 = 2/3

» 6 + 3x/3x = 2

» 6 + 3x = 6x

» 6 = 6x - 3x

» 6 = 3x

» x = 6/3

  • » x = 2

Hence,

The value of x is 2 and y is 3

Verification :-

  • 2/x + 3/y = 2

» 2/2 + 3/3 = 2

» 1 + 1 = 2

» 2 = 2

LHS = RHS

And

  • 1/x - 1/2y = 1/3

» 1/2 - 1/6 = 1/3

» 3 - 1/6 = 1/3

» 2/6 = 1/3

» 1/3 = 1/3

LHS = RHS

Hence,

Verified..

Answered by silentlover45
2

  \huge \mathfrak{Answer:-}

\implies x = 2

\implies y = 3

\large\underline\mathrm{Given:-}

  • 2/x + 3/y = 2
  • 1/x - 1/y = 1/3

\large\underline\mathrm{To \: find}

  • Value of x and y.

\large\underline\mathrm{Solution}

\implies 2/x + 3/y = 2___(1)

\implies 1/x - 1/y = 1/3__(2)

\large\underline\mathrm{Now,}

\large\underline\mathrm{Eq. \: (1) \: × \: 1 \: and \: Eq. \: (2) \: × \: 2, \: we \: get .}

\implies [2/x + 3/y = 2] × 1

\implies [1/x - 1/y = 1/3] × 2

2/x + 3/y = 2

2/x - 1/y = 2/3

____________________

\implies 4/y = 4/3

\implies y = 3

\large\underline\mathrm{putting \: the \: value \: of \: y \: on \: Eq. \: (1).}

\implies 2/x + 3/y = 2

\implies 6 + 3x/3x = 2

\implies 6 + 3x = 6x

\implies 6 = 6x - 3x

\implies 6 = 3x

\implies x = 6/3

\implies x = 2

\large\underline\mathrm{hence,}

\large\underline\mathrm{the \: value \: of \: x \: is \: 2 \: and \: y \: is \: 3.}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions