solve
for
X
and Y
X(a- b +
ab / a- b)
=
Y(a+ b - ab/ a+ b)
X + Y = 2a^2
Answers
Answer:
Solution for x
x(a−b+ab÷a−b)=y(a+b−ab÷a+b)x+y=2a2

a
y\left(a+b-\frac{ab}{a}+b\right)xa+ay=2a^{2}ay(a+b−aab+b)xa+ay=2a2a

213
y\left(a+b-\frac{ab}{a}+b\right)xa+ay=2a^{3}y(a+b−aab+b)xa+ay=2a3

a
y\left(a+b-b+b\right)xa+ay=2a^{3}y(a+b−b+b)xa+ay=2a3

bb2b
y\left(a+2b-b\right)xa+ay=2a^{3}y(a+2b−b)xa+ay=2a3

ya+2b-b
\left(ya+2yb+y\left(-b\right)\right)xa+ay=2a^{3}(ya+2yb+y(−b))xa+ay=2a3

ya+2yb+y\left(-b\right)x
\left(yax+2ybx+y\left(-b\right)x\right)a+ay=2a^{3}(yax+2ybx+y(−b)x)a+ay=2a3

yax+2ybx+y\left(-b\right)xa
yxa^{2}+2ybxa+y\left(-b\right)xa+ay=2a^{3}yxa2+2ybxa+y(−b)xa+ay=2a3

ay
yxa^{2}+2ybxa+y\left(-b\right)xa=2a^{3}-ayyxa2+2ybxa+y(−b)xa=2a3−ay

2ybxay\left(-1\right)bxaybxa
yxa^{2}+ybxa=2a^{3}-ayyxa2+ybxa=2a3−ay

x
\left(ya^{2}+yba\right)x=2a^{3}-ay(ya2+yba)x=2a3−ay

\left(aby+ya^{2}\right)x=2a^{3}-ay(aby+ya2)x=2a3−ay

ya^{2}+yba
\frac{\left(aby+ya^{2}\right)x}{aby+ya^{2}}=\frac{a\left(2a^{2}-y\right)}{aby+ya^{2}}aby+ya2(aby+ya
Solution for y
x(a−b+ab÷a−b)=y(a+b−ab÷a+b)x+y=2a2

a
y\left(a+b-\frac{ab}{a}+b\right)xa+ay=2a^{2}ay(a+b−aab+b)xa+ay=2a2a

213
y\left(a+b-\frac{ab}{a}+b\right)xa+ay=2a^{3}y(a+b−aab+b)xa+ay=2a3

a
y\left(a+b-b+b\right)xa+ay=2a^{3}y(a+b−b+b)xa+ay=2a3

bb2b
y\left(a+2b-b\right)xa+ay=2a^{3}y(a+2b−b)xa+ay=2a3

ya+2b-b
\left(ya+2yb+y\left(-b\right)\right)xa+ay=2a^{3}(ya+2yb+y(−b))xa+ay=2a3

ya+2yb+y\left(-b\right)x
\left(yax+2ybx+y\left(-b\right)x\right)a+ay=2a^{3}(yax+2ybx+y(−b)x)a+ay=2a3

yax+2ybx+y\left(-b\right)xa
yxa^{2}+2ybxa+y\left(-b\right)xa+ay=2a^{3}yxa2+2ybxa+y(−b)xa+ay=2a3

2ybxay\left(-1\right)bxaybxa
yxa^{2}+ybxa+ay=2a^{3}yxa2+ybxa+ay=2a3

y
\left(xa^{2}+bxa+a\right)y=2a^{3}(xa2+bxa+a)y=2a3

\left(abx+xa^{2}+a\right)y=2a^{3}(abx+xa2+a)y=2a3

xa^{2}+bxa+a
\frac{\left(abx+xa^{2}+a\right)y}{abx+xa^{2}+a}=\frac{2a^{3}}{abx+xa^{2}+a}abx+xa2+a(abx+xa2+a)y=abx+
Answer:
for
x
and y
X(a-B+
ab/a-b
=
Y(a+b-ab/a+b
X+Y=2a2