Math, asked by sanu3512, 1 year ago

solve for x and y x+y=17;x²+y²=169​

Answers

Answered by sravani77
8

X+y=17

X2+Y2=169

(17)2=169+2XY

289-169=2XY

120=2XY

XY=60

then x+y=17

XY=60then X=12

Y=5

Answered by sivaprasath
17

Answer:

x = 5 & y = 12 is a solution,

&

x = 12 & y= 5 is another solution.

Step-by-step explanation:

Given :

To find the value of x & y if,

x + y = 17 ...(i)

&

x² + y² = 169  ...(ii)

Solution :

We know that,

(a + b)² = a² + 2ab + b² ..(iii)

&

(a - b)² = a² - 2ab + b²  ..(iv)

Hence, by using these identities,.

⇒ x + y = 17

⇒ (x + y)² = (17)²

⇒ x² + 2xy + y² = 289   (by (iii) )

⇒ (x² + y²) + 2xy = 289

⇒ 169 + 2xy = 289

⇒ 2xy = 289 - 169

⇒ 2xy = 120  ...(v)

__

(x - y)² = x² - 2xy + y²  ( by (iv) )

⇒ (x - y)² = (x² + y²) - 2xy

⇒ (x - y)² = 169 - 120

⇒ (x - y)² = 49

⇒ x - y = ±7 (let it be +7)

⇒ x - y = 7 ...(vi)

By adding (i) & (vi),

We get,

⇒ (x + y) + (x - y) = 17 + 7

⇒ 2x = 24

⇒ x = 12

By substituting the value of x in (i),

We get,

⇒ x + y = 17

⇒ 12 + y = 17

⇒ y = 17 - 12

⇒ y = 5

∴ x = 12 & y = 5

and if x - y = -7,  ..(vii)

Then,

By adding (vii) & (i),

We get,

⇒ (x + y) + (x - y) = 17 + (-7)

⇒ 2x = 10

⇒ x = 5,

By substituting the value of x in (i),

We get,.

⇒ x + y = 17

⇒ 4 + y = 17

⇒ y = 17 - 5

⇒ y = 12,.

x = 5 & y = 12 is a solution,

&

x = 12 & y= 5 is another solution,.

Similar questions