Math, asked by imsanjana, 9 months ago

solve for x :- cos2 30° + sin2 2x = 1​

Answers

Answered by Anonymous
3

Cos^2(30) + sin^2(x) =1

Sin^2(x) = 1 - cos^2(30)

sin^2(x) = sin^2(30)

Taking square root,

Sin(x) = sin(30)

=> x = nπ + (-1)^n × 30 (general solution)

=> x = 30° (definite solution)

Answered by Unni007
12

Given,

\sf cos^230+sin^2 2x=1

We have to evaluate the value of x.

We know,

\sf cos\: 30=\dfrac{\sqrt 3}{2}

\sf\implies cos^2 30=[\dfrac{\sqrt 3}{2}]^2

\implies\sf cos^2 30=\dfrac{3}{4}

Applying the value to the equation,

\sf \dfrac{3}{4}+sin^2 2x=1

\implies\sf sin^2 2x=1-\dfrac{3}{4}

\implies\sf sin^2 2x=\dfrac{1}{4}

\implies\sf sin 2x=\sqrt{\dfrac{1}{4}}

\implies\sf sin 2x={\dfrac{1}{2}}

  • The length of the shortest side is   \bf\dfrac{1}{2} .
  • This side is opposite the smallest angle - 30 degrees.
  • The length of the hypotenuse is 1

Therefore,

\sf sin\:30=\dfrac{1}{2}

If x =  15 ,

\sf sin\:2x=sin\:30=\dfrac{1}{2}

The next angle beyond  30  degrees such that  :

\sf sin\:x=\dfrac{1}{2}=150^0=180-30

Therefore x = 75.

Therefore ,

x can have the values :

► x = 15 ◄   OR   ► x = 75 ◄

Similar questions