Math, asked by suvaUrshan, 1 year ago

solve for x : cot-1x - cot-1(x+2) = pi/12 .

Answers

Answered by mindfulmaisel
37

The value of x by solving this equation \cot ^{-1 x}-\cot ^{-1(x+2)}=\frac{\pi}{12} is \bold{\sqrt{3}}.

As we know that,

\cot ^{-1 x}=\tan x.

\cot ^{-1(x+2)}=\tan x+2.

As we know that the value of pi (\pi=180^{\circ}),

Then,

\frac{\pi}{12}=15^{\circ}

Substitute the values in given equation,

\tan ^{-1} \frac{1}{x}-\tan ^{-1} \frac{1}{x+2}=15

\frac{\tan ^{-1}\left(\left(\frac{1}{x}-\frac{1}{x+2}\right)\right)}{1+\frac{1}{x(x+2)}}=15

\tan ^{-1}\left(\frac{2}{x^{2}+2 x+1}\right)=15

\frac{2}{x^{2}+2 x+1}=\tan 15

\frac{2}{x^{2}+2 x+1}=\frac{\sqrt{3}-1}{\sqrt{3}+1}

Take conjugate for (\sqrt{3}+1),

\frac{2}{x^{2}+2 x+1}=\frac{(\sqrt{3}-1)(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}+1)}

\frac{2}{x^{2}+2 x+1}=\frac{2}{(\sqrt{3}+1)^{2}}

(x+1)^{2}=(\sqrt{3}+1)^{2}

Therefore, \bold{x=\sqrt{3}}

Similar questions