Solve for X given that sin(5X - 28)° = cos(3X - 50)°.
Answers
Answered by
3
- Sin (5x – 28)o = cos (3x - 50)o
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relation
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relationSin(5x – 28)o = cos[90 – (5x – 28)]o
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relationSin(5x – 28)o = cos[90 – (5x – 28)]oHence cos(3x – 50)o = cos[90 – (5x – 28)]o
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relationSin(5x – 28)o = cos[90 – (5x – 28)]oHence cos(3x – 50)o = cos[90 – (5x – 28)]o3x – 50 = 90 - (5x-28)
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relationSin(5x – 28)o = cos[90 – (5x – 28)]oHence cos(3x – 50)o = cos[90 – (5x – 28)]o3x – 50 = 90 - (5x-28)3x – 50 = 90 – 5x + 28
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relationSin(5x – 28)o = cos[90 – (5x – 28)]oHence cos(3x – 50)o = cos[90 – (5x – 28)]o3x – 50 = 90 - (5x-28)3x – 50 = 90 – 5x + 283x + 5x = 90 + 28 + 50
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relationSin(5x – 28)o = cos[90 – (5x – 28)]oHence cos(3x – 50)o = cos[90 – (5x – 28)]o3x – 50 = 90 - (5x-28)3x – 50 = 90 – 5x + 283x + 5x = 90 + 28 + 508x = 168
- Sin (5x – 28)o = cos (3x - 50)oSince by the trigonometry relationSin(5x – 28)o = cos[90 – (5x – 28)]oHence cos(3x – 50)o = cos[90 – (5x – 28)]o3x – 50 = 90 - (5x-28)3x – 50 = 90 – 5x + 283x + 5x = 90 + 28 + 508x = 168x=1688=21∘
Similar questions