solve for x, guys please be quick
Attachments:
Answers
Answered by
1
Hence, here also applying the same formula
==> (x^4 - 4x^3 + 6x^2 - 4x + 1) + (x^4 - 20x^3 + 150x^2 - 500x + 625) = 82
==> 2x^4 - 24x^3 + 156x^2 - 504x + 544 = 0
==> x^4 - 12x^3 + 78x^2 - 252x + 272 = 0.
By long/synthetic division,
x^4 - 12x^3 + 78x^2 - 252x + 272
= (x - 4) (x^3 - 8x^2 + 46x - 68)
= (x - 4)(x - 2)(x^2 - 6x + 34).
So, we have
(x - 4)(x - 2)(x^2 - 6x + 34) = 0
==> x = 4, 2, or x = 3 ± 5i
So, the real solutions are x=4 and x=2
Answered by
1
We know that (a-b)^4 = a^4- 4a^3b + 6a^2b^2 - 4ab^3 + b^4 ---- (1)
On substituting the values in (1), we get
(x-1)^4 = (x^4 - 4x^3 + 6x^2 - 4x + 1).
(x-5)^4 = (x^4 - 20x^3 + 150x^2 - 500x + 625)
(x-1)^4 + (x-5)^4 = 82
2x^4-24x^3+156x^2-504x+626 = 82
2x^4 - 24x^3 + 156x^2 - 504x + 544 = 0
2(x^4 - 12x^3 + 78x^2 - 252x + 272) = 0
2(x^4 - 12x^3 + 78x^2 - 252x + 272) = 0
(x-2)(x-4)(x^2-6x+34) = 0.
x^2 - 6x + 34 can be written as x^2 - 6x + 9 = -25
(x-3)^2 = -25
(x-3) = root -25
x = 3 + root 25.
x = 2,x = 4, x = 3+5i,x = 3-5i..
Hope this helps!
On substituting the values in (1), we get
(x-1)^4 = (x^4 - 4x^3 + 6x^2 - 4x + 1).
(x-5)^4 = (x^4 - 20x^3 + 150x^2 - 500x + 625)
(x-1)^4 + (x-5)^4 = 82
2x^4-24x^3+156x^2-504x+626 = 82
2x^4 - 24x^3 + 156x^2 - 504x + 544 = 0
2(x^4 - 12x^3 + 78x^2 - 252x + 272) = 0
2(x^4 - 12x^3 + 78x^2 - 252x + 272) = 0
(x-2)(x-4)(x^2-6x+34) = 0.
x^2 - 6x + 34 can be written as x^2 - 6x + 9 = -25
(x-3)^2 = -25
(x-3) = root -25
x = 3 + root 25.
x = 2,x = 4, x = 3+5i,x = 3-5i..
Hope this helps!
siddhartharao77:
Thank You So Much for the brainliest
Similar questions
Science,
8 months ago
Physics,
8 months ago
Science,
8 months ago
Computer Science,
1 year ago
Math,
1 year ago