Math, asked by sircraper, 1 year ago

Solve for x if 2(3^x-3^(x-1))=324

Answers

Answered by simranlove
86
2(3^x-3^x-1)=324
3^x-3^(x-1)=162
3^(x-1)=3^4
x-1=4
x=5
Answered by SteffiPaul
26

Given,

  • 2(3^x -3^{x-1}) = 324 is given.

To find,

  • Value of x

Solution,

The value of x for 2(3^x -3^{x-1}) = 324 is 5.

We can simply find the value of x by using the laws of exponents.

                        2(3^x -3^{x-1}) = 324

                         (3^x -3^{x-1}) = 324/2

                         (3^x -3^{x-1}) = 162

162 can be written as (3)⁴* 2.

                       (3^x -3^{x-1}) = 2 * 3^4

Taking 3^{x-1} common, we get

                    3^{x-1}(3-1) = 24  

                    3^{x-1} * 2 = 2 * 3^4

                            3^{x-1}= 3^4

Since the same bases have the same powers, equating the powers, we get

                           x-1 = 4

                                 x = 4+1

                                 x=5

Hence, the value of x for 2(3^x -3^{x-1}) = 324 is 5.                        

Similar questions