Math, asked by omdarekar14, 11 months ago

Solve for x if (2x/x-5)^2+(2x/x-5)-24=0

Answers

Answered by harendrachoubay
4

x =\dfrac{115+\sqrt{2425}}{18} or \dfrac{115-\sqrt{2425}}{18}

Step-by-step explanation:

We have,

(\dfrac{2x}{x-5} )^2+(\dfrac{2x}{x-5})-24=0

To find, the value of x = ?

∴  (\dfrac{2x}{x-5} )^2+(\dfrac{2x}{x-5})-24=0

\dfrac{2x}{x-5}[\dfrac{2x}{x-5} +1]-24=0

\dfrac{2x}{x-5}[\dfrac{3x-5}{x-5} ]-24=0

\dfrac{2x}{x-5}[\dfrac{3x-5}{x-5} ]=24

2x(3x-5)=24(x-5)^2

x(3x-5)=12(x^2-10x+25)

3x^2-5x=12x^2-120x+300

9x^2-115x+300=0

Here, a = 9, b = - 115 and c = 300

∴ x =  \dfrac{-b±\sqrt{b^{2}-4ac}}{2a}

=\dfrac{-(-115)±\sqrt{(-115)^{2}-4(9)(300)}}{2(9)}

=\dfrac{115±\sqrt{13225-10800}}{18}

=\dfrac{115±\sqrt{2425}}{18}

∴ x =\dfrac{115+\sqrt{2425}}{18} or \dfrac{115-\sqrt{2425}}{18}

Similar questions