Solve for x : If ∠ ABC = ( 5x + 36) degree and ∠ AC B = 9x
Attachments:
Answers
Answered by
2
Answer:
9°
Step-by-step explanation:
since AB=AC
angle ABC=angleACB
(5x+36)=9x
4x=36
x=9°
Answered by
1
Answer:
:⟹eccentricityofanellipse:⟹b2=a2(1−e2):⟹16=25(1−e2):⟹16=25−25e2:⟹9=25e2
\begin{gathered}\sf : \implies \: e \: = \sqrt{ \dfrac{9}{25} } = \dfrac{3}{5} \\ \\ \sf : \implies \: eccentricity \: = \frac{3}{5} \\ \\ \sf : \implies \: foci \: of \: an \: ellipse \: = (ae,0) \: \: and \: \: ( - ae,0) \\ \\ \sf : \implies \: (5 \times \frac{3}{5} ,0) \: \: and \: \: ( - 5 \times \frac{3}{5} ,0) \\ \\ \sf : \implies \: (3,0) \: \: and \: ( - 3,0)\end{gathered}:⟹e=259=53:⟹eccentricity=53:⟹fociofan
Similar questions