Math, asked by anuradha5929, 1 year ago

solve for x if
 log_{3}(x)  +  log_{9}( {x}^{2} )  +  log_{27}( {x}^{3} )  = 0

Answers

Answered by BrainlyConqueror0901
149

Answer:

\huge{\boxed{\sf{X=3}}}✔✔

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\bold\:log_{3}(x)  +  log_{9}( {x}^{2} ) +  log_{27}( {x}^{3} )   = 3 \\ USING\:FORMULA\:\\ = ) \frac{ log(x) }{ log(3) }  +  \frac{2 log(x) }{2 log(3) }  +  \frac{3 log(x) }{3 log(3) }  = 3 \\ TALKING\:LCM\:WE\:GET\\ = ) \frac{3  log(x)  }{ log(3) }  = 3 \\  = ) log(x)  =  log(3)  \\  = )x = 3


Anonymous: some mistakes ,,, = 0 not 3 ...
Anonymous: please edit.
Answered by Anonymous
11

Solution :-

Some properties of log

log(a) + log(b) = log(a × b)

logₐb = c → b = aᶜ

 log_{a^m}(b) = \dfrac{1}{m} log_a(b)

 log_{a}(b^m) = m \times log_a(b)

As told by the asker of this question Correct Question is :-

 log_{3}(x) + log_{9}( {x}^{2} ) + log_{27}( {x}^{3} ) = 3

Now by making the Base same

 \rightarrow log_{3}(x) + log_{3^2}( {x}^{2} ) + log_{3^3}( {x}^{3} ) = 3

\rightarrow log_{3}(x) + \dfrac{2}{2}log_{3}( {x}) + \dfrac{3}{3}log_{3}({x}) = 3

\rightarrow log_{3}(x) + log_{3}(x) + log_{3}(x) = 3

\rightarrow log_3(x \times x \times x ) = 3

\rightarrow log_3(x^{3}) = 3

 \rightarrow 3 \times log_3(x) = 3

\rightarrow log_3(x) = 1

\rightarrow x = 3^1

\rightarrow x = 3

Similar questions