solve for x if x^2-(√3+1)x+√3=0, find the roots through quadratic formula or sridhara's formula.
Answers
Answered by
375
Hi...☺
Here is your answer...✌
Given quadratic equation :
x² - (√3 + 1)x + √3 = 0
⇒ a = 1 , b = -(√3 + 1) , c = √3
Discriminant , D = b² - 4ac
D = (√3 + 1)² - 4×1×√3
D = (√3)² + 1² + 2√3 - 4√3
D = (√3)² + 1² - 2√3
D = (√3 - 1)²
Now using quadratic formula,
we get,
x = ( -b ± √D ) / 2a
x = [ √3 + 1 ± ( √3 - 1 ) ] / 2×1
x = (√3+1+√3-1)/2 or x = (√3+1-√3+1)/2
⇒ x = 2√3 / 2 or x = 2/2
⇒ x = √3 or x = 1
Here is your answer...✌
Given quadratic equation :
x² - (√3 + 1)x + √3 = 0
⇒ a = 1 , b = -(√3 + 1) , c = √3
Discriminant , D = b² - 4ac
D = (√3 + 1)² - 4×1×√3
D = (√3)² + 1² + 2√3 - 4√3
D = (√3)² + 1² - 2√3
D = (√3 - 1)²
Now using quadratic formula,
we get,
x = ( -b ± √D ) / 2a
x = [ √3 + 1 ± ( √3 - 1 ) ] / 2×1
x = (√3+1+√3-1)/2 or x = (√3+1-√3+1)/2
⇒ x = 2√3 / 2 or x = 2/2
⇒ x = √3 or x = 1
Answered by
83
Answer:
Step-by-step explanation:
x² - (√3 + 1)x + √3 = 0
⇒ a = 1 , b = -(√3 + 1) , c = √3
Discriminant , D = b² - 4ac
D = (√3 + 1)² - 4×1×√3
D = (√3)² + 1² + 2√3 - 4√3
D = (√3)² + 1² - 2√3
D = (√3 - 1)²
Now using quadratic formula,
we get,
x = ( -b ± √D ) / 2a
x = [ √3 + 1 ± ( √3 - 1 ) ] / 2×1
x = (√3+1+√3-1)/2 or x = (√3+1-√3+1)/2
⇒ x = 2√3 / 2 or x = 2/2
⇒ x = √3 or x = 1
Similar questions