solve for x if x-q upon p+q = x+q upon p-q
Answers
Answered by
2
Step-by-step explanation:
take the LCM on both sides
take the LCM on both sides( xp - p^2 + qx - q^2 )/pq = ( qx - q^2 + xp - q^2 )/ x^2 - px - qx + pq
take the LCM on both sides( xp - p^2 + qx - q^2 )/pq = ( qx - q^2 + xp - q^2 )/ x^2 - px - qx + pqpq = x^2 - px - qx + px
take the LCM on both sides( xp - p^2 + qx - q^2 )/pq = ( qx - q^2 + xp - q^2 )/ x^2 - px - qx + pqpq = x^2 - px - qx + px0 = x^2 - px - qx
take the LCM on both sides( xp - p^2 + qx - q^2 )/pq = ( qx - q^2 + xp - q^2 )/ x^2 - px - qx + pqpq = x^2 - px - qx + px0 = x^2 - px - qx0 = x ( x - p - q )
take the LCM on both sides( xp - p^2 + qx - q^2 )/pq = ( qx - q^2 + xp - q^2 )/ x^2 - px - qx + pqpq = x^2 - px - qx + px0 = x^2 - px - qx0 = x ( x - p - q )0 = x - p - q
take the LCM on both sides( xp - p^2 + qx - q^2 )/pq = ( qx - q^2 + xp - q^2 )/ x^2 - px - qx + pqpq = x^2 - px - qx + px0 = x^2 - px - qx0 = x ( x - p - q )0 = x - p - qx= p + q.
Hope it will help you
Similar questions