Math, asked by pranavi54321, 11 months ago

solve for x... immediately​

Attachments:

Answers

Answered by Anonymous
32

Question :

Solve for x

7 {}^{1 + x}  + 7 {}^{1 - x}  = 50

Solution :

Given condition :

7 {}^{1 + x}  + 7 {}^{1 - x}  = 50

Method one to solve the problem:

7 {}^{1 + x}  + 7 {}^{1  - x}  = 50

Let 7{}^{x}=y

 \implies \: 7 \times 7 {}^{x}  + 7 \times 7 {}^{ - x}  = 50

 \implies \: 7 \times y + 7 \times  \frac{1}{y}  = 50

 \implies \: 7y {}^{2}  - 50z + 7 = 0

 \implies \: 7y {}^{2}  - 49y - y  + 7 = 0

 \implies \: 7y ( y - 7) - 1(y - 7) = 0

 \implies \: (7y - 1)(y -7) = 0

 \implies \: y  = 7 \: or \: y \:  =  \frac{1}{7}

But 7{}^{x}=y

⇒ x = 1 or -1

_______________________

Second Method :

7 {}^{1 + x}  + 7 {}^{1  - x}  = 50

Split the RHS term

 \implies \: 7 {}^{1 + x}  + 7 {}^{1 - x}  = 7 {}^{2}  + 7 {}^{0}

on comparing

1+x = 2

⇒x = 1

1-x = 0

⇒x= 1

Note :

it is a direct method ;so it's not accurate.

____________________

therefore :

{\purple{\boxed{\large{\bold{x=1\:or-1}}}}}

Answered by singhamanpratap0249
1

Answer:

7^1+x +7^1-x=50

7^1+x+7^1-x=7²+7^0

1+x=2

x=1

and 1-x=0

x=1...

Attachments:
Similar questions