Solve for x in : sin^-1 (8/x )+ sin^-1( 15/x)=pie/2
Answers
Answered by
64
sin^-1(8/x) + sin^-1(15/x) = π/2
so, Let sin^-1(15/x) = P
sinP = 15/x
then, cosP = √(x² - 225)/x
P = cos^-1{√(x² - 225)/x}
now, sin^-1(8/x) + cos^-1{√(x² - 225)/x}= π/2
so, 8/x = √(x² - 225)/x
8 = √(x² - 225)
taking square both sides,
64 = x² - 225
x² = 289 => 17²
x = ±17
hence, x = ±17
so, Let sin^-1(15/x) = P
sinP = 15/x
then, cosP = √(x² - 225)/x
P = cos^-1{√(x² - 225)/x}
now, sin^-1(8/x) + cos^-1{√(x² - 225)/x}= π/2
so, 8/x = √(x² - 225)/x
8 = √(x² - 225)
taking square both sides,
64 = x² - 225
x² = 289 => 17²
x = ±17
hence, x = ±17
Similar questions
Science,
8 months ago
Social Sciences,
8 months ago
English,
8 months ago
Physics,
1 year ago
Math,
1 year ago
Political Science,
1 year ago