Math, asked by colinfirth2008, 11 months ago

Solve for x (in terms of a and b):
A/x-b + B/x-a =2

Answers

Answered by Anonymous
8

SOLUTION

 \frac{a}{x - b}  +  \frac{b}{x - a} = 2  \\  =  >  \frac{a(x - a) + b(x - b)}{(x - a)(x - b)}  = 2 \\  =  > ax - a {}^{2}  + bx - b {}^{2}  = 2x {}^{2}  + 2ab - 2bx - 2ax  \\  =  >  - 2x {}^{2} +  ax + bx + 2ax + 2bx = a {}^{2}  + b {}^{2}  + 2ab  \\ =  > 3ax + 3bx - 2x {}^{2}  = (a + b) {}^{2}  \\  =  > 2x {}^{2}  - x(3a + 3b) + (a + b) {}^{2}  = 0 \\  =  > 2x {}^{2}  -x  (2(a + b) + (a + b)) + (a + b) {}^{2}  = 0 \\  =  > 2x {}^{2}  - 2x(a + b) - x(a + b) + (a + b) {}^{2}  = 0 \\  =  > 2x(x - (a + b)) - (a + b)(x  - (a + b)) = 0 \\  =  > (2x - (a + b))(x - (a + b)) = 0 \\  =  > (2x - a - b)(x - a - b) = 0 \\  \\ therefore..... \\ either \\ 2x - a - b = 0 \\  =  > x =  \frac{a + b}{2}  \\ or..... \\ x - a - b = 0 \\  =  > x = a + b

Answered by Anonymous
55

AnswEr :

 \large \bold{ \frac{a}{x - b}  +  \frac{b}{x - a}  = 2}

 \large \bold{ \frac{a(x - a) + b(x - b)}{(x - b)(x - a)} = 2 }

  • By Cross Multiplication

➨ a(x - a) + b(x - b) = 2(x - b)(x - a)

➨ ax - a² + bx - b² = 2(x² - ax - bx + ab)

➨ ax - a² + bx - b² = 2x² - 2ax - 2bx + 2ab

➨ ax + 2ax + bx + 2bx = 2x² + 2ab + a² + b²

➨ 3ax + 3bx = 2x² + (a + b)²

➨ 3ax + 3bx - 2x² - (a + b)² = 0

➨ - 2x² + (3a + 3b)x - (a + b)² = 0

➨ - 2x² + [(2a + 2b) + (a + b)]x - (a + b)² = 0

➨ - 2x² + (2a + 2b)x + (a + b)x - (a + b)² = 0

➨ - 2x[x - (a + b)] + (a + b)[x - (a + b)] = 0

➨ [(a + b) - 2x][x - (a + b)] = 0

➨ [(a + b) - 2x] = 0 or, [x - (a + b)] = 0

➨ (a + b) = 2x or, (x - a - b) = 0

➨ x = \huge\tt{\frac{(a+b)}{2}} or, x = (a + b)

Similar questions