Math, asked by avu1514, 7 months ago

solve for x ! indices chapter class 9 icse ​

Attachments:

Answers

Answered by srija28
1

Answer:

-1/2

Step-by-step explanation:

2x+(x+1) = x

3x+1 = x

1 = x-3x

1 = -2x

x = -1/2

Hopefully it'll help......

Answered by Anonymous
10

 \purple{\Huge{\underline{\underline{ \rm{Solution }}}}}

 \sf8 \times  {2}^{2x}  + 4 \times  {2}^{x + 1}  = 1 +  {2}^{x}

 \sf{We \: know, \:  {(a \times b)}^{2} } =   {a}^{m}   \times  {b}^{m}

 \sf{ \therefore{ {2}^{x + 1}  =  {2}^{x}  \times  {2}^{1} }}

  \sf8 \times  {2}^{2x}  + 4 \times  {2}^{x } \times    {2}^{1} = 1 +  {2}^{x}

 \sf8 \times  { ({2}^{x}) }^{2}  + 4 \times  {2}^{x }   \times  {2}^{1}   - 1 +  {2}^{x}  = 0

Taking  \sf {2}^{x} as common, we have:

8 \times  { ({2}^{x} )}^{2}  +  {2}^{x} (4 \times 1 \times 2 - 1) - 1 = 0

 \sf8 \times  { ({2}^{x}) }^{2}  +  {2}^{x}  \times (8 - 1) - 1 = 0

 \sf8 \times  { {(2}^{x}) }^{2}  + 7 ({2}^{x})   - 1 = 0

Let  \sf y =  {2}^{x}

 \sf {8y}^{2}  + 7y - 1 = 0

 \sf{ {8y}^{2}  + 8y - y - 1 = 0}

 \sf{8y(y + 1) - 1(y + 1) = 0}

 \sf{(8y - 1) \: (y + 1) = 0}

Now,

 \sf{8y - 1 = 0} \:  or \: y + 1 =  0

 \sf8y = 1 \: or \: y =  - 1

 \sf y =  \dfrac{1}{8}  \: or \: y =  - 1

Putting value of  \sf {2}^{x} , we have:

  \sf{2}^{x}  =  \dfrac{1}{8}  \: or \:  {2}^{x}  =  - 1

Here we will not consider  \sf {2}^{x}  =  - 1 because it is not possible.

Therefore, here we will take:

 \sf {2}^{x}  =  \dfrac{1}{8}

Now,

 \sf  {2}^{x}  =  \dfrac{1}{ {2}^{3} }

 \sf   {2}^{x}  =  {2}^{ - 3}

When the bases are same powers are equal:

\sf{ \green{ \underline{ \boxed{ \boxed{ \sf{x =  - 3}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions