Solve for x. Log5 (x+3)=1-log5 (x-1).
Answers
Answered by
3
➡️
Or,
Or, x + 3 = 5 / (x - 1)
Or, x^2 - x + 3x - 3 = 5
Or, x^2 + 2x - 8 = 0
Or, x^2 + 4x - 2x - 8 = 0
Or, x(x + 4) - 2(x + 4) = 0.
Or, (x - 2)(x + 4) = 0
Or, x - 2 = 0.
Or, x = 2.
➡️ Hence, x = 2.
That's it..
Answered by
2
x = 2
step-by-step explanation:
Given,
Now,
we know that,
cm = 1
so,
we may write,
1 =
now,
putting this value in the Equation,
we get,
=>
{ °.° log a - log b = log (a/b) }
Now,
all the quantities are on the same base '5'
so,
we can simpliy write,
=> x+3 = 5/(x-1)
doing cross multiply,
=> (x-1)(x+3) = 5
=>
=>
=>
Doing factorisation,
we get,
=>
=>
=> x-2 = 0 and x+ 4=0
=> x = 2 and x = -4
But,
if we put
x = -4
then,
=
=
But,
we know that,
in ,
b > 0
therefore,
it is contradiction,
Hence,
x = 2
Similar questions